UNPKG

forerunnerdb

Version:

A NoSQL document store database for browsers and Node.js.

2,601 lines (2,134 loc) 144 kB
### Version 3.0 is Coming! Many of you use ForerunnerDB in your work and have given lots of feedback to me about getting some new features / functionality into the next version. You can see the active work on this endeavour over at https://github.com/Irrelon/forerunnerdb-core ForerunnerDB 3.0 is being built in a completely modular fashion with extensibility at heart. Things like better persistent storage, exotic index support, different query language support etc are all going to be much simpler. It's nowhere near ready for prime time right now but if you feel like checking out the core functionality, head over to that repo above and check out what's there. With ❤ from Rob. # ForerunnerDB - A NoSQL JSON Document DB ForerunnerDB is developed with ❤ love by [Irrelon Software Limited](https://www.irrelon.com/), a UK registered company. > ForerunnerDB is used in live projects that serve millions of users a day, is production ready and battle tested in real-world applications. ForerunnerDB receives no funding or third-party backing except from patrons like yourself. If you love ForerunnerDB and want to support its development, or if you use it in your own products please consider becoming a patron: [https://www.patreon.com/user?u=4443427](https://www.patreon.com/user?u=4443427) Community Support: [https://github.com/Irrelon/ForerunnerDB/issues](https://github.com/Irrelon/ForerunnerDB/issues) Commercial Support: [forerunnerdb@irrelon.com](mailto:forerunnerdb@irrelon.com) ## Version 2.0.24 [![npm version](https://badge.fury.io/js/forerunnerdb.svg)](https://www.npmjs.com/package/forerunnerdb) [![Security Scan](https://snyk.io/test/npm/forerunnerdb/badge.svg)](https://snyk.io/test/npm/forerunnerdb) [![NPM Stats](https://nodei.co/npm/forerunnerdb.png?downloads=true)](https://npmjs.org/package/forerunnerdb) #### TravisCI Build Test Status <table> <tr> <th>Master</th> <th>Dev</th> </tr> <tr> <td><a href="https://travis-ci.org/Irrelon/ForerunnerDB"><img src="https://travis-ci.org/Irrelon/ForerunnerDB.svg?branch=master" title="Master Branch Build Status" /></a></td> <td><a href="https://travis-ci.org/Irrelon/ForerunnerDB"><img src="https://travis-ci.org/Irrelon/ForerunnerDB.svg?branch=dev" title="Dev Branch Build Status" /></a></td> </tr> </table> ### Standout Features * [AngularJS and Ionic Support](#angularjs-and-ionic-support) - Optional AngularJS module provides ForerunnerDB as an angular service. * [Views](#views) - Virtual collections that are built from existing collections and limited by live queries. * [Joins](#joins) - Query with joins across multiple collections and views. * [Sub-Queries](#subqueries-and-subquery-syntax) - ForerunnerDB supports sub-queries across collections and views. * [Collection Groups](#collection-groups) - Add collections to a group and operate CRUD on them as a single entity. * [Data Binding (*Browser Only*)](#data-binding) - Optional binding module to bind data to your DOM and have it update your page in realtime as data changes. * [Persistent Storage (*Browser & Node.js*)](#data-persistence-save-and-load-between-pages) - Optional persist module to save your data and load it back at a later time, great for multi-page apps. * [Compression & Encryption](#data-compression-and-encryption) - Support for compressing and encrypting your persisted data. * [Built-In REST Server (*Node.js*)](#forerunnerdb-built-in-json-rest-api-server) - Optional REST server with powerful access control, remote procedures, access collections, views etc via REST interface. Rapid prototyping is made very easy with ForerunnerDB server-side. ## What is ForerunnerDB ForerunnerDB is a NoSQL JavaScript JSON database with a query language based on MongoDB (with some differences) and runs on browsers and Node.js. It is in use in many large production web applications and is transparently used by over 6 million clients. ForerunnerDB is the most advanced, battle-tested and production ready browser-based JSON database system available today. ## What is ForerunnerDB's Primary Use Case? ForerunnerDB was created primarily to allow web (and mobile web / hybrid) application developers to easily store, query and manipulate JSON data in the browser / mobile app via a simple query language, making handling JSON data significantly easier. ForerunnerDB supports data persistence on both the client (via LocalForage) and in Node.js (by saving and loading JSON data files). If you build advanced web applications with AngularJS or perhaps your own framework or if you are looking to build a server application / API that needs a fast queryable in-memory store with file-based data persistence and a very easy setup (simple installation via NPM and no requirements except Node.js) you will also find ForerunnerDB very useful. > An example hybrid application that runs on iOS, Android and Windows Mobile via Ionic (AngularJS + Cordova with some nice extensions) is available in this repository under the ionicExampleClient folder. [See here for more details](#ionic-example-app). ## Download ### NPM If you are using Node.js (or have it installed) you can use NPM to download ForerunnerDB via: ```bash npm install forerunnerdb ``` ### NPM Dev Builds You can also install the development version which usually includes new features that are considered either unstable or untested. To install the development version you can ask NPM for the dev tag: ```bash npm install forerunnerdb --tag dev ``` ### Bower You can also install ForerunnerDB via the bower package manager: ```bash bower install forerunnerdb ``` ### No Package Manager If you are still a package manager hold-out or you would prefer a more traditional download, please click [here](https://github.com/irrelon/ForerunnerDB/archive/master.zip). # How to Use ## Use ForerunnerDB in *Browser* > fdb-all.min.js is the entire ForerunnerDB with all the added extras. If you prefer only the core database functionality (just collections, no views etc) you can use fdb-core.min.js instead. A [list of the different builds](#distribution-files) is available for you to select the best build for your purposes. Include the fdb-all.min.js file in your HTML (change path to the location you put forerunner): ```html <script src="./js/dist/fdb-all.min.js" type="text/javascript"></script> ``` ## Use ForerunnerDB in *Node.js* After installing via npm (see above) you can require ForerunnerDB in your code: ```js var ForerunnerDB = require("forerunnerdb"); var fdb = new ForerunnerDB(); ``` ## Create a Database ```js var db = fdb.db("myDatabaseName"); ``` > If you do not specify a database name a randomly generated one is provided instead. ## Collections (Tables) > Data Binding: Enabled To create or get a reference to a collection object, call db.collection (where collectionName is the name of your collection): ```js var collection = db.collection("collectionName"); ``` In our examples we will use a collection called "item" which will store some fictitious items for sale: ```js var itemCollection = db.collection("item"); ``` ### Auto-Creation When you request a collection that does not yet exist it is automatically created. If it already exists you are given the reference to the existing collection. If you want ForerunnerDB to throw an error if a collection is requested that does not already exist you can pass an option to the *collection()* method instead: ```js var collection = db.collection("collectionName", {autoCreate: false}); ``` ### Specifying a Primary Key Up-Front > If no primary key is specified ForerunnerDB uses "_id" by default. On requesting a collection you can specify a primary key that the collection should be using. For instance to use a property called "name" as the primary key field: ```js var collection = db.collection("collectionName", {primaryKey: "name"}); ``` You can also read or specify a primary key after instantiation via the primaryKey() method. ### Capped Collections Occasionally it is useful to create a collection that will store a finite number of records. When that number is reached, any further documents inserted into the collection will cause the oldest inserted document to be removed from the collection on a first-in-first-out rule (FIFO). In this example we create a capped collection with a document limit of 5: ```js var collection = db.collection("collectionName", {capped: true, size: 5}); ``` ## Inserting Documents > If you do not specify a value for the primary key, one will be automatically generated for any documents inserted into a collection. Auto-generated primary keys are pseudo-random 16 character strings. > **PLEASE NOTE**: When doing an insert into a collection, ForerunnerDB will automatically split the insert up into smaller chunks (usually of 100 documents) at a time to ensure the main processing thread remains unblocked. If you wish to be informed when the insert operation is complete you can pass a callback method to the insert call. Alternatively you can turn off this behaviour by calling yourCollection.deferredCalls(false); You can either insert a single document object: ```js itemCollection.insert({ _id: 3, price: 400, name: "Fish Bones" }); ``` or pass an array of documents: ```js itemCollection.insert([{ _id: 4, price: 267, name:"Scooby Snacks" }, { _id: 5, price: 234, name: "Chicken Yum Yum" }]); ``` ### Inserting a Large Number of Documents When inserting large amounts of documents ForerunnerDB may break your insert operation into multiple smaller operations (usually of 100 documents at a time) in order to avoid blocking the main processing thread of your browser / Node.js application. You can find out when an insert has completed either by passing a callback to the insert call or by switching off async behaviour. Passing a callback: ```js itemCollection.insert([{ _id: 4, price: 267, name:"Scooby Snacks" }, { _id: 5, price: 234, name: "Chicken Yum Yum" }], function (result) { // The result object will contain two arrays (inserted and failed) // which represent the documents that did get inserted and those // that didn't for some reason (usually index violation). Failed // items also contain a reason. Inspect the failed array for further // information. }); ``` If you wish to switch off async behaviour you can do so on a per-collection basis via: ```js db.collection('myCollectionName').deferredCalls(false); ``` After async behaviour (deferred calls) has been disabled, you can insert records and be sure that they will all have inserted before the next statement is processed by the application's main thread. ### Inserting Special Objects JSON has limitations on the types of objects it will serialise and de-serialise back to an object. Two very good examples of this are the Date() and RegExp() objects. Both can be serialised via JSON.stringify() but when calling JSON.parse() on the serialised version neither type will be "re-materialised" back to their object representations. For example: ```js var a = { dt: new Date() }; a.dt instanceof Date; // true var b = JSON.stringify(a); // "{"dt":"2016-02-11T09:52:49.170Z"}" var c = JSON.parse(b); // {dt: "2016-02-11T09:52:49.170Z"} c.dt instanceof Date; // false ``` As you can see, parsing the JSON string works but the dt key no longer contains a Date instance and only holds the string representation of the date. This is a fundamental drawback of using JSON.stringify() and JSON.parse() in their native form. If you want ForerunnerDB to serialise / de-serialise your object instances you must use this format instead: ```js var a = { dt: fdb.make(new Date()) }; ``` By wrapping the new Date() in fdb.make() we allow ForerunnerDB to provide the Date() object with a custom .toJSON() method that serialises it differently to the native implementation. For convenience the make() method is also available on all ForerunnerDB class instances e.g. db, collection, view etc. For instance you can access make via: ```js var fdb = new ForerunnerDB(), db = fdb.db('test'), coll = db.collection('testCollection'), date = new Date(); // All of these calls will do the same thing: date = fdb.make(date); date = db.make(date); date = coll.make(date); ``` You can read more about how ForerunnerDB's serialiser works [here](https://github.com/Irrelon/ForerunnerDB/wiki/Serialiser-&-Performance-Benchmarks). #### Supported Instance Types and Usage ##### Date ```js var a = { dt: fdb.make(new Date()) }; ``` ##### RegExp ```js var a = { re: fdb.make(new RegExp(".*", "i")) }; ``` or ```js var a = { re: fdb.make(/.*/i)) }; ``` #### Adding Custom Types to the Serialiser ForerunnerDB's serialisation system allows for custom type handling so that you can expand JSON serialisation to your own custom class instances. This can be a complex topic so it has been broken out into the Wiki section for further reading [here](https://github.com/Irrelon/ForerunnerDB/wiki/Adding-Custom-Types-to-the-Serialiser). ## Searching the Collection > **PLEASE NOTE** While we have tried to remain as close to MongoDB's query language as possible, small differences are present in the query matching logic. The main difference is described here: [Find behaves differently from MongoDB](https://github.com/Irrelon/ForerunnerDB/issues/43) > See the *[Special Considerations](#special-considerations)* section for details about how names of keys / properties in a query object can affect a query's operation. Much like MongoDB, searching for data in a collection is done using the find() method, which supports many of the same operators starting with a $ that MongoDB supports. For instance, finding documents in the collection where the price is greater than 90 but less than 150, would look like this: ```js itemCollection.find({ price: { "$gt": 90, "$lt": 150 } }); ``` And would return an array with all matching documents. If no documents match your search, an empty array is returned. ### Regular Expressions Searches support regular expressions for advanced text-based queries. Simply pass the regular expression object as the value for the key you wish to search, just like when using regular expressions with MongoDB. Insert a document: ```js collection.insert([{ "foo": "hello" }]); ``` Search by regular expression: ```js collection.find({ "foo": /el/ }); ``` You can also use the RegExp object instead: ```js var myRegExp = new RegExp("el"); collection.find({ "foo": myRegExp }); ``` ### Query Operators ForerunnerDB supports many of the same query operators that MongoDB does, and adds some that are not available in MongoDB but which can help in browser-centric applications. * [$gt](#gt) Greater Than * [$gte](#gte) Greater Than / Equal To * [$lt](#lt) Less Than * [$lte](#lte) Less Than / Equal To * [$eq](#eq) Equal To (==) * [$eeq](#eeq) Strict Equal To (===) * [$ne](#ne) Not Equal To (!=) * [$nee](#nee) Strict Not Equal To (!==) * [$not](#not) Apply boolean not to query * [$in](#in) Match Any Value In An Array Of Values * [$fastIn](#fastIn) Match Any String or Number In An Array Of String or Numbers * [$nin](#nin) Match Any Value Not In An Array Of Values * [$distinct](#distinct) Match By Distinct Key/Value Pairs * [$count](#count) Match By Length Of Sub-Document Array * [$or](#or) Match any of the conditions inside the sub-query * [$and](#and) Match all conditions inside the sub-query * [$exists](#exists) Check that a key exists in the document * [$elemMatch](#elemMatch) Limit sub-array documents by query * [$elemsMatch](#elemsMatch) Multiple document version of $elemMatch * [$aggregate](#aggregate) Converts an array of documents into an array of values base on a path / key * [$near](#near) Geospatial operation finds outward from a central point #### $gt Selects those documents where the value of the field is greater than (i.e. >) the specified value. ```js { field: {$gt: value} } ``` ##### Usage ```js var fdb = new ForerunnerDB(), db = fdb.db("test"), coll = db.collection("test"); coll.insert([{ _id: 1, val: 1 }, { _id: 2, val: 2 }, { _id: 3, val: 3 }]); result = coll.find({ val: { $gt: 1 } }); ``` Result is: ```js [{ _id: 2, val: 2 }, { _id: 3, val: 3 }] ``` #### $gte Selects the documents where the value of the field is greater than or equal to (i.e. >=) the specified value. ```js { field: {$gte: value} } ``` ##### Usage ```js var fdb = new ForerunnerDB(), db = fdb.db("test"), coll = db.collection("test"); coll.insert([{ _id: 1, val: 1 }, { _id: 2, val: 2 }, { _id: 3, val: 3 }]); result = coll.find({ val: { $gte: 1 } }); ``` Result is: ```js [{ _id: 1, val: 1 }, { _id: 2, val: 2 }, { _id: 3, val: 3 }] ``` #### $lt Selects the documents where the value of the field is less than (i.e. <) the specified value. ```js { field: { $lt: value} } ``` ##### Usage ```js var fdb = new ForerunnerDB(), db = fdb.db("test"), coll = db.collection("test"); coll.insert([{ _id: 1, val: 1 }, { _id: 2, val: 2 }, { _id: 3, val: 3 }]); result = coll.find({ val: { $lt: 2 } }); ``` Result is: ```js [{ _id: 1, val: 1 }] ``` #### $lte Selects the documents where the value of the field is less than or equal to (i.e. <=) the specified value. ```js { field: { $lte: value} } ``` ##### Usage ```js var fdb = new ForerunnerDB(), db = fdb.db("test"), coll = db.collection("test"); coll.insert([{ _id: 1, val: 1 }, { _id: 2, val: 2 }, { _id: 3, val: 3 }]); result = coll.find({ val: { $lte: 2 } }); ``` Result is: ```js [{ _id: 1, val: 1 }, { _id: 2, val: 2 }] ``` #### $eq Selects the documents where the value of the field is equal (i.e. ==) to the specified value. ```js {field: {$eq: value} } ``` ##### Usage ```js var fdb = new ForerunnerDB(), db = fdb.db("test"), coll = db.collection("test"); coll.insert([{ _id: 1, val: 1 }, { _id: 2, val: 2 }, { _id: 3, val: 3 }]); result = coll.find({ val: { $eq: 2 } }); ``` Result is: ```js [{ _id: 2, val: 2 }] ``` #### $eeq Selects the documents where the value of the field is strict equal (i.e. ===) to the specified value. This allows for strict equality checks for instance zero will not be seen as false because 0 !== false and comparing a string with a number of the same value will also return false e.g. ('2' == 2) is true but ('2' === 2) is false. ```js {field: {$eeq: value} } ``` ##### Usage ```js var fdb = new ForerunnerDB(), db = fdb.db("test"), coll = db.collection("test"); coll.insert([{ _id: 1, val: "2" }, { _id: 2, val: 2 }, { _id: 3, val: "2" }]); result = coll.find({ val: { $eeq: 2 } }); ``` Result is: ```js [{ _id: 2, val: 2 }] ``` #### $ne Selects the documents where the value of the field is not equal (i.e. !=) to the specified value. This includes documents that do not contain the field. ```js {field: {$ne: value} } ``` ##### Usage ```js var fdb = new ForerunnerDB(), db = fdb.db("test"), coll = db.collection("test"); coll.insert([{ _id: 1, val: 1 }, { _id: 2, val: 2 }, { _id: 3, val: 3 }]); result = coll.find({ val: { $ne: 2 } }); ``` Result is: ```js [{ _id: 1, val: 1 }, { _id: 3, val: 3 }] ``` #### $nee Selects the documents where the value of the field is not equal equal (i.e. !==) to the specified value. This allows for strict equality checks for instance zero will not be seen as false because 0 !== false and comparing a string with a number of the same value will also return false e.g. ('2' != 2) is false but ('2' !== 2) is true. This includes documents that do not contain the field. ```js {field: {$nee: value} } ``` ##### Usage ```js var fdb = new ForerunnerDB(), db = fdb.db("test"), coll = db.collection("test"); coll.insert([{ _id: 1, val: 1 }, { _id: 2, val: 2 }, { _id: 3, val: 3 }]); result = coll.find({ val: { $nee: 2 } }); ``` Result is: ```js [{ _id: 1, val: 1 }, { _id: 3, val: 3 }] ``` #### $not Selects the documents where the result of the query inside the $not operator do not match the query object. ```js {$not: query} ``` ##### Usage ```js var fdb = new ForerunnerDB(), db = fdb.db("test"), coll = db.collection("test"); coll.insert({ _id: 1, name: 'John Doe', group: [{ name: 'groupOne' }, { name: 'groupTwo' }] }); coll.insert({ _id: 2, name: 'Jane Doe', group: [{ name: 'groupTwo'} ] }); result = coll.find({ $not: { group: { name: 'groupOne' } } }); ``` Result is: ```js [{ _id: 2, name: 'Jane Doe', group: [{ name: 'groupTwo'} ] }] ``` #### $in > If your field is a string or number and your array of values are also either strings or numbers you can utilise $fastIn which is an optimised $in query that uses indexOf() to identify matching values instead of looping over all items in the array of values and running a new matching process against each one. If your array of values include sub-queries or other complex logic you should use $in, not $fastIn. Selects documents where the value of a field equals any value in the specified array. ```js { field: { $in: [<value1>, <value2>, ... <valueN> ] } } ``` ##### Usage ```js var fdb = new ForerunnerDB(), db = fdb.db("test"), coll = db.collection("test"); coll.insert([{ _id: 1, val: 1 }, { _id: 2, val: 2 }, { _id: 3, val: 3 }]); result = coll.find({ val: { $in: [1, 3] } }); ``` Result is: ```js [{ _id: 1, val: 1 }, { _id: 3, val: 3 }] ``` #### $fastIn > You can use $fastIn instead of $in when your field contains a string or number and your array of values contains only strings or numbers. $fastIn utilises indexOf() to speed up performance of the query. This means that the array of values is not evaluated for sub-queries, other operators like $gt etc, and it is assumed that the array of values is a completely flat array, filled only with strings or numbers. Selects documents where the string or number value of a field equals any string or number value in the specified array. The array of values *MUST* be a flat array and contain only strings or numbers. ```js { field: { $fastIn: [<value1>, <value2>, ... <valueN> ] } } ``` ##### Usage ```js var fdb = new ForerunnerDB(), db = fdb.db("test"), coll = db.collection("test"); coll.insert([{ _id: 1, val: 1 }, { _id: 2, val: 2 }, { _id: 3, val: 3 }]); result = coll.find({ val: { $fastIn: [1, 3] } }); ``` Result is: ```js [{ _id: 1, val: 1 }, { _id: 3, val: 3 }] ``` #### $nin Selects documents where the value of a field does not equal any value in the specified array. ```js { field: { $nin: [ <value1>, <value2> ... <valueN> ]} } ``` ##### Usage ```js var fdb = new ForerunnerDB(), db = fdb.db("test"), coll = db.collection("test"); coll.insert([{ _id: 1, val: 1 }, { _id: 2, val: 2 }, { _id: 3, val: 3 }]); result = coll.find({ val: { $nin: [1, 3] } }); ``` Result is: ```js [{ _id: 2, val: 2 }] ``` #### $distinct Selects the first document matching a value of the specified field. If any further documents have the same value for the specified field they will not be returned. ```js { $distinct: { field: 1 } } ``` ##### Usage ```js var fdb = new ForerunnerDB(), db = fdb.db("test"), coll = db.collection("test"); coll.insert([{ _id: 1, val: 1 }, { _id: 2, val: 1 }, { _id: 3, val: 1 }, { _id: 4, val: 2 }]); result = coll.find({ $distinct: { val: 1 } }); ``` Result is: ```js [{ _id: 1, val: 1 }, { _id: 4, val: 2 }] ``` #### $count > Version >= 1.3.326 > This is equivalent to MongoDB's $size operator but please see below for usage. Selects documents based on the length (count) of items in an array inside a document. ```js { $count: { field: <value> } } ``` ##### Select Documents Where The "arr" Array Field Has Only 1 Item ```js var fdb = new ForerunnerDB(), db = fdb.db("test"), coll = db.collection("test"); coll.insert([{ _id: 1, arr: [] }, { _id: 2, arr: [{ val: 1 }] }, { _id: 3, arr: [{ val: 1 }, { val: 2 }] }]); result = coll.find({ $count: { arr: 1 } }); ``` Result is: ```js [{ _id: 2, arr: [{ val: 1 }] }] ``` ##### Select Documents Where The "arr" Array Field Has More Than 1 Item ```js var fdb = new ForerunnerDB(), db = fdb.db("test"), coll = db.collection("test"); coll.insert([{ _id: 1, arr: [] }, { _id: 2, arr: [{ val: 1 }] }, { _id: 3, arr: [{ val: 1 }, { val: 2 }] }]); result = coll.find({ $count: { arr: { $gt: 1 } } }); ``` Result is: ```js [{ _id: 3, arr: [{ val: 1 }, { val: 2 }] }] ``` #### $or The $or operator performs a logical OR operation on an array of two or more <expressions> and selects the documents that satisfy at least one of the <expressions>. ```js { $or: [ { <expression1> }, { <expression2> }, ... , { <expressionN> } ] } ``` ##### Usage ```js var fdb = new ForerunnerDB(), db = fdb.db("test"), coll = db.collection("test"); coll.insert([{ _id: 1, val: 1 }, { _id: 2, val: 2 }, { _id: 3, val: 3 }]); result = coll.find({ $or: [{ val: 1 }, { val: { $gte: 3 } }] }); ``` Result is: ```js [{ _id: 1, val: 1 }, { _id: 3, val: 3 }] ``` #### $and Performs a logical AND operation on an array of two or more expressions (e.g. <expression1>, <expression2>, etc.) and selects the documents that satisfy all the expressions in the array. The $and operator uses short-circuit evaluation. If the first expression (e.g. <expression1>) evaluates to false, ForerunnerDB will not evaluate the remaining expressions. ```js { $and: [ { <expression1> }, { <expression2> } , ... , { <expressionN> } ] } ``` ##### Usage ```js var fdb = new ForerunnerDB(), db = fdb.db("test"), coll = db.collection("test"); coll.insert([{ _id: 1, val: 1 }, { _id: 2, val: 2 }, { _id: 3, val: 3 }]); result = coll.find({ $and: [{ _id: 3 }, { val: { $gte: 3 } }] }); ``` Result is: ```js [{ _id: 3, val: 3 }] ``` #### $exists When <boolean> is true, $exists matches the documents that contain the field, including documents where the field value is null. If <boolean> is false, the query returns only the documents that do not contain the field. ```js { field: { $exists: <boolean> } } ``` ##### Usage ```js var fdb = new ForerunnerDB(), db = fdb.db("test"), coll = db.collection("test"); coll.insert([{ _id: 1, val: 1 }, { _id: 2, val: 2, moo: "hello" }, { _id: 3, val: 3 }]); result = coll.find({ moo: { $exists: true } }); ``` Result is: ```js [{ _id: 2, val: 2, moo: "hello" }] ``` ### Projection #### $elemMatch The $elemMatch operator limits the contents of an *array* field from the query results to contain only the first element matching the $elemMatch condition. The $elemMatch operator is specified in the *options* object of the find call rather than the query object. [MongoDB $elemMatch Documentation](https://docs.mongodb.org/manual/reference/operator/projection/elemMatch/) ##### Usage ```js var fdb = new ForerunnerDB(), db = fdb.db("test"), coll = db.collection("test"); coll.insert({ names: [{ _id: 1, text: "Jim" }, { _id: 2, text: "Bob" }, { _id: 3, text: "Bob" }, { _id: 4, text: "Anne" }, { _id: 5, text: "Simon" }, { _id: 6, text: "Uber" }] }); result = coll.find({}, { $elemMatch: { names: { text: "Bob" } } }); ``` Result is: ```js { names: [{ _id: 2, text: "Bob" }] } ``` Notice that only the FIRST item matching the $elemMatch clause is returned in the names array. If you require multiple matches use the ForerunnerDB-specific $elemsMatch operator instead. #### $elemsMatch The $elemsMatch operator limits the contents of an *array* field from the query results to contain only the elements matching the $elemMatch condition. The $elemsMatch operator is specified in the *options* object of the find call rather than the query object. ##### Usage ```js var fdb = new ForerunnerDB(), db = fdb.db("test"), coll = db.collection("test"); coll.insert({ names: [{ _id: 1, text: "Jim" }, { _id: 2, text: "Bob" }, { _id: 3, text: "Bob" }, { _id: 4, text: "Anne" }, { _id: 5, text: "Simon" }, { _id: 6, text: "Uber" }] }); result = coll.find({}, { $elemsMatch: { names: { text: "Bob" } } }); ``` Result is: ```js { names: [{ _id: 2, text: "Bob" }, { _id: 3, text: "Bob" }] } ``` Notice that all items matching the $elemsMatch clause are returned in the names array. If you require match on ONLY the first item use the MongoDB-compliant $elemMatch operator instead. #### $aggregate Coverts an array of documents into an array of values that are derived from a key or path in the documents. This is very useful when combined with the $find operator to run sub-queries and return arrays of values from the results. ```js { $aggregate: path} ``` ##### Usage ```js var fdb = new ForerunnerDB(), db = fdb.db("test"), coll = db.collection("test"); coll.insert([{ _id: 1, val: 1 }, { _id: 2, val: 2 }, { _id: 3, val: 3 }]); result = coll.find({}, { $aggregate: "val" }); ``` Result is: ```json [1, 2, 3] ``` #### $near > **PLEASE NOTE**: BETA STATUS - PASSES UNIT TESTING BUT MAY BE UNSTABLE Finds other documents whose co-ordinates based on a 2d index are within the specified distance from the specified centre point. Co-ordinates must be presented in latitude / longitude for $near to work. ```js { field: { $near: { $point: [<latitude number>, <longitude number>], $maxDistance: <number>, $distanceUnits: <units string> } } } ``` ##### Usage ```js var fdb = new ForerunnerDB(), db = fdb.db("test"), coll = db.collection("test"); coll.insert([{ latLng: [51.50722, -0.12750], name: 'Central London' }, { latLng: [51.525745, -0.167550], // 2.18 miles name: 'Marylebone, London' }, { latLng: [51.576981, -0.335091], // 10.54 miles name: 'Harrow, London' }, { latLng: [51.769451, 0.086509], // 20.33 miles name: 'Harlow, Essex' }]); // Create a 2d index on the lngLat field coll.ensureIndex({ latLng: 1 }, { type: '2d' }); // Query index by distance // $near queries are sorted by distance from centre point by default result = coll.find({ latLng: { $near: { $point: [51.50722, -0.12750], $maxDistance: 3, $distanceUnits: 'miles' } } }); ``` Result is: ```json [{ "lngLat": [51.50722, -0.1275], "name": "Central London", "_id": "1f56c0b5885de40" }, { "lngLat": [51.525745, -0.16755], "name": "Marylebone, London", "_id": "372a34d9f17fbe0" }] ``` ### Ordering / Sorting Results You can specify an $orderBy option along with the find call to order/sort your results. This uses the same syntax as MongoDB: ```js itemCollection.find({ price: { "$gt": 90, "$lt": 150 } }, { $orderBy: { price: 1 // Sort ascending or -1 for descending } }); ``` ### Grouping Results > Version >= 1.3.757 You can specify a $groupBy option along with the find call to group your results: ```js myColl = db.collection('myColl'); myColl.insert([{ "price": "100", "category": "dogFood" }, { "price": "60", "category": "catFood" }, { "price": "70", "category": "catFood" }, { "price": "65", "category": "catFood" }, { "price": "35", "category": "dogFood" }]); myColl.find({}, { $groupBy: { "category": 1 // Group using the "category" field. Path's are also allowed e.g. "category.name" } }); ``` Result is: ```json { "dogFood": [{ "price": "100", "category": "dogFood" }, { "price": "35", "category": "dogFood" }], "catFood": [{ "price": "60", "category": "catFood" }, { "price": "70", "category": "catFood" }, { "price": "65", "category": "catFood" }], } ``` ### Limiting Return Fields - Querying for Partial Documents / Objects You can specify which fields are included in the return data for a query by adding them in the options object. This returns a partial document for each matching document in your query. This follows the same rules specified by MongoDB here: [MongoDB Documentation](https://docs.mongodb.org/manual/tutorial/project-fields-from-query-results/) > Please note that the primary key field will always be returned unless explicitly excluded from the results via "_id: 0". #### Usage ```js var fdb = new ForerunnerDB(), db = fdb.db("test"), coll = db.collection("test"); coll.insert([{ _id: 1, text: "Jim", val: 2131232, arr: [ "foo", "bar", "you" ] }]); ``` Now query for only the "text" field of each document: ```js result = coll.find({}, { text: 1 }); ``` Result is: ```js [{ _id: 1, text: "Jim" }] ``` Notice the _id field is ALWAYS included in the results unless you explicitly exclude it: ```js result = coll.find({}, { _id: 0, text: 1 }); ``` Result is: ```js [{ text: "Jim" }] ``` ### Pagination / Paging Through Results > Version >= 1.3.55 It is often useful to limit the number of results and then page through the results one page at a time. ForerunnerDB supports an easy pagination system via the $page and $limit query options combination. #### Usage ```js var fdb = new ForerunnerDB(), db = fdb.db("test"), coll = db.collection("test"), data = [], count = 100, result, i; // Generate random data for (i = 0; i < count; i++) { data.push({ _id: String(i), val: i }); } coll.insert(data); // Query the first 10 records (page indexes are zero-based // so the first page is page 0 not page 1) result = coll.find({}, { $page: 0, $limit: 10 }); // Query the next 10 records result = coll.find({}, { $page: 1, $limit: 10 }); ``` ### Skipping Records in a Query > Version >= 1.3.55 You can skip records at the beginning of a query result by providing the $skip query option. This operates in a similar fashion to the MongoDB [skip()](https://docs.mongodb.org/manual/reference/method/cursor.skip/) method. #### Usage ```js var fdb = new ForerunnerDB(), db = fdb.db("test"), coll = db.collection("test").truncate(), data = [], count = 100, result, i; // Generate random data for (i = 0; i < count; i++) { data.push({ _id: String(i), val: i }); } coll.insert(data); result = coll.find({}, { $skip: 50 }); ``` ### Finding and Returning Sub-Documents When you have documents that contain arrays of sub-documents it can be useful to search and extract them. Consider this data structure: ```js var fdb = new ForerunnerDB(), db = fdb.db("test"), coll = db.collection("test").truncate(), result, i; coll.insert({ _id: "1", arr: [{ _id: "332", val: 20, on: true }, { _id: "337", val: 15, on: false }] }); /** * Finds sub-documents from the collection's documents. * @param {Object} match The query object to use when matching parent documents * from which the sub-documents are queried. * @param {String} path The path string used to identify the key in which * sub-documents are stored in parent documents. * @param {Object=} subDocQuery The query to use when matching which sub-documents * to return. * @param {Object=} subDocOptions The options object to use when querying for * sub-documents. * @returns {*} */ result = coll.findSub({ _id: "1" }, "arr", { on: false }, { //$stats: true, //$split: true }); ``` The result of this query is an array containing the sub-documents that matched the query parameters: ```js [{ _id: "337", val: 15, on: false }] ``` > The result of findSub never returns a parent document's data, only data from the matching sub-document(s) The fourth parameter (options object) allows you to specify if you wish to have stats and if you wish to split your results into separate arrays for each matching parent document. ### Subqueries and Subquery Syntax > Version >= 1.3.469 > Subqueries are ForerunnerDB specific and do not work in MongoDB A subquery is a query object within another query object. Subqueries are useful when the query you wish to run is reliant on data inside another collection or view and you do not want to run a separate query first to retrieve that data. Subqueries in ForerunnerDB are specified using the $find operator inside your query. Take the following example data: ```js var fdb = new ForerunnerDB(), db = fdb.db("test"), users = db.collection("users"), admins = db.collection("admins"); users.insert([{ _id: 1, name: "Jim" }, { _id: 2, name: "Bob" }, { _id: 3, name: "Bob" }, { _id: 4, name: "Anne" }, { _id: 5, name: "Simon" }]); admins.insert([{ _id: 2, enabled: true }, { _id: 4, enabled: true }, { _id: 5, enabled: false }]); result = users.find({ _id: { $in: { $find: { $from: "admins", $query: { enabled: true }, $options: { $aggregate: "_id" } } } } }); ``` When this query is executed the $find sub-query object is replaced with the results from the sub-query so that the final query with (aggregated)[#$aggregate] _id field looks like this: ```js result = users.find({ _id: { $in: [3, 4] } }); ``` The result of the query after execution is: ```json [{ "_id": 3, "name": "Bob" }, { "_id": 4, "name": "Anne" }] ``` ## Updating the Collection This is one of the areas where ForerunnerDB and MongoDB are different. By default ForerunnerDB updates only the keys you specify in your update document, rather than outright *replacing* the matching documents like MongoDB does. In this sense ForerunnerDB behaves more like MySQL. In the call below, the update will find all documents where the price is greater than 90 and less than 150 and then update the documents' key "moo" with the value true. ```js collection.update({ price: { "$gt": 90, "$lt": 150 } }, { moo: true }); ``` If you wish to fully replace a document with another one you can do so using the $replace operator described in the *Update Operators* section below. If you want to replace a key's value you can use the $overwrite operator described in the *Update Operators* section below. ## Quick Updates You can target individual documents for update by their id (primary key) via a quick helper method: ```js collection.updateById(1, {price: 180}); ``` This will update the document with the _id field of 1 to a new price of 180. ### Update Operators * [$addToSet](#addtoset) * [$cast](#cast) * [$each](#each) * [$inc](#inc) * [$move](#move) * [$mul](#mul) * [$overwrite](#overwrite) * [$push](#push) * [$pull](#pull) * [$pullAll](#pullall) * [$pop](#pop) * [$rename](#rename) * [$replace](#replace) * [$splicePush](#splicepush) * [$splicePull](#splicepull) * [$toggle](#toggle) * [$unset](#unset) * [Array Positional in Updates (.$)](#array-positional-in-updates) #### $addToSet Adds an item into an array only if the item does not already exist in the array. ForerunnerDB supports the $addToSet operator as detailed in the MongoDB documentation. Unlike MongoDB, ForerunnerDB also allows you to specify a matching field / path to check uniqueness against by using the $key property. In the following example $addToSet is used to check uniqueness against the whole document being added: ```js // Create a collection document db.collection("test").insert({ _id: "1", arr: [] }); // Update the document by adding an object to the "arr" array db.collection("test").update({ _id: "1" }, { $addToSet: { arr: { name: "Fufu", test: "1" } } }); // Try and do it again... this will fail because a // matching item already exists in the array db.collection("test").update({ _id: "1" }, { $addToSet: { arr: { name: "Fufu", test: "1" } } }); ``` Now in the example below we specify which key to test uniqueness against: ```js // Create a collection document db.collection("test").insert({ _id: "1", arr: [] }); // Update the document by adding an object to the "arr" array db.collection("test").update({ _id: "1" }, { $addToSet: { arr: { name: "Fufu", test: "1" } } }); // Try and do it again... this will work because the // key "test" is different for the existing and new objects db.collection("test").update({ _id: "1" }, { $addToSet: { arr: { $key: "test", name: "Fufu", test: "2" } } }); ``` You can also specify the key to check uniqueness against as an object path such as 'moo.foo'. #### $cast > Version >= 1.3.34 The $cast operator allows you to change a property's type within a document. If used to cast a property to an array or object the property is set to a new blank array or object respectively. This example changes the type of the "val" property from a string to a number: ```js db.collection("test").insert({ val: "1.2" }); db.collection("test").update({}, { $cast: { val: "number" } }); JSON.stringify(db.collection("test").find()); ``` Result: ```js [{ "_id": "1d6fbf16e080de0", "val": 1.2 }] ``` You can also use cast to ensure that an array or object exists on a property without overwriting that property if one already exists: ```js db.collection("test").insert({ _id: "moo", arr: [{ test: true }] }); db.collection("test").update({ _id: "moo" }, { $cast: { arr: "array" } }); JSON.stringify(db.collection("test").find()); ``` Result: ```js [{ "_id": "moo", "arr": [{ "test": true }] }] ``` Should you wish to initialise an array or object with specific data if the property is not currently of that type rather than initialising as a blank array / object, you can specify the data to use by including a $data property in your $cast operator object: ```js db.collection("test").insert({ _id: "moo" }); db.collection("test").update({ _id: "moo" }, { $cast: { orders: "array", $data: [{ initial: true }] } }); JSON.stringify(db.collection("test").find()); ``` Result: ```js [{ "_id": "moo", "orders":[{ "initial": true }] }] ``` #### $each > Version >= 1.3.34 $each allows you to iterate through multiple update operations on the same query result. Use $each when you wish to execute update operations in sequence or on the same query. Using $each is slightly more performant than running each update operation one after the other calling update(). Consider the following sequence of update calls that define a couple of nested arrays and then push a value to the inner-nested array: ```js db.collection("test").insert({ _id: "445324", count: 5 }); db.collection("test").update({ _id: "445324" }, { $cast: { arr: "array", $data: [{}] } }); db.collection("test").update({ _id: "445324" }, { arr: { $cast: { secondArr: "array" } } }); db.collection("test").update({ _id: "445324" }, { arr: { $push: { secondArr: "moo" } } }); JSON.stringify(db.collection("test").find()); ``` Result: ```js [ { "_id": "445324", "count": 5, "arr": [{"secondArr": ["moo"]}] } ] ``` These calls a wasteful because each update() call must query the collection for matching documents before running the update against them. With $each you can pass a sequence of update operations and they will be executed in order: ```js db.collection("test").insert({ _id: "445324", count: 5 }); db.collection("test").update({ _id: "445324" }, { $each: [{ $cast: { arr: "array", $data: [{}] } }, { arr: { $cast: { secondArr: "array" } } }, { arr: { $push: { secondArr: "moo" } } }] }); JSON.stringify(db.collection("test").find()); ``` Result: ```js [ { "_id": "445324", "count": 5, "arr": [{"secondArr": ["moo"]}] } ] ``` As you can see the single sequenced call produces the same output as the multiple update() calls but will run slightly faster and use fewer resources. #### $inc The $inc operator increments / decrements a field value by the given number. ```js db.collection("test").update({ <query> }, { $inc: { <field>: <value> } }); ``` In the following example, the "count" field is decremented by 1 in the document that matches the id "445324": ```js db.collection("test").insert({ _id: "445324", count: 5 }); db.collection("test").update({ _id: "445324" }, { $inc: { count: -1 } }); JSON.stringify(db.collection("test").find()); ``` Result: ```js [{ "_id": "445324", "count": 4 }] ``` Using a positive number will increment, using a negative number will decrement. #### $move The $move operator moves an item that exists inside a document's array from one index to another. ```js db.collection("test").update({ <query> }, { $move: { <arrayField>: <value|query>, $index: <index> } }); ``` The following example moves "Milk" in the "shoppingList" array to index 1 in the document with the id "23231": ```js db.users.update({ _id: "23231" }, { $move: { shoppingList: "Milk" $index: 1 } }); ``` #### $mul The $mul operator multiplies a field value by the given number and sets the result as the field's new value. ```js db.collection("test").update({ <query> }, { $mul: { <field>: <value> } }); ``` In the following example, the "value" field is multiplied by 2 in the document that matches the id "445324": ```js db.collection("test").insert({ _id: "445324", value: 5 }); db.collection("test").update({ _id: "445324" }, { $mul: { value: 2 } }); JSON.stringify(db.collection("test").find()); ``` Result: ```js [{ "_id": "445324", "value": 10 }] ``` #### $overwrite The $overwrite operator replaces a key's value with the one passed, overwriting it completely. This operates the same way that MongoDB's default update behaviour works without using the $set operator. If you wish to fully replace a document with another one you can do so using the $replace operator instead. The $overwrite operator is most useful when updating an array field to a new type such as an object. By default ForerunnerDB will detect an array and step into the array objects one at a time and apply the update to each object. When you use $overwrite you can replace the array instead of stepping into it. ```js db.collection("test").update({ <query> }, { $overwrite: { <field>: <value>, <field>: <value>, <field>: <value> } }); ``` In the following example the "arr" field (initially an array) is replaced by an object: ```js db.collection("test").insert({ _id: "445324", arr: [{ foo: 1 }] }); db.collection("test").update({ _id: "445324" }, { $overwrite: { arr: { moo: 1 } } }); JSON.stringify(db.collection("test").find()); ``` Result: ```js [{ "_id": "445324", "arr": { "moo": 1 } }] ``` #### $push The $push operator appends a specified value to an array. ```js db.collection("test").update({ <query> }, { $push: { <field>: <value> } }); ``` The following example appends "Milk" to the "shoppingList" array in the document with the id "23231": ```js db.collection("test").insert({ _id: "23231", shoppingList: [] }); db.collection("test").update({ _id: "23231" }, { $push: { shoppingList: "Milk" } }); JSON.stringify(db.collection("test").find()); ``` Result: ```js [{ "_id": "23231", "shoppingList": [ "Milk" ] }] ``` #### $pull The $pull operator removes a specified value or values that match an input query. ```js db.collection("test").update({ <query> }, { $pull: { <arrayField>: <value|query> } }); ``` The following example removes the "Milk" entry from the "shoppingList" array: ```js db.users.update({ _id: "23231" }, { $pull: { shoppingList: "Milk" } }); ``` If an array element is an embedded document (JavaScript object), the $pull operator applies its specified query to the element as though it were a top-level object. #### $pullAll The $pullAll operator removes all values / array entries that match an input query from the target array field. ```js db.collection("test").update({ <query> }, { $pullAll: { <arrayField>: <value|query> } }); ``` The following example removes all instances of "Milk" and "Toast from the "items" array: ```js db.users.update({ _id: "23231" }, { $pullAll: { items: ["Milk", "Toast"] } }); ``` If an array element is an embedded document (JavaScript object), the $pullAll operator applies its specified query to the element as though it were a top-level object. #### $pop The $pop operator removes an element from an array at the beginning or end. If you wish to remove an element from the end of the array pass 1 in your value. If you wish to remove an element from the beginning of an array pass -1 in your value. ```js db.collection("test").update({ <query> }, { $pop: { <field>: <value> } }); ``` The following example pops the item from the beginning of the "shoppingList" array: ```js db.collection("test").insert({ _id: "23231", shoppingList: [{ _id: 1, name: "One" }, { _id: 2, name: "Two" }, { _id: 3, name: "Three" }] }); db.collection("test").update({ _id: "23231" }, { $pop: { shoppingList: -1 // -1 pops from the beginning, 1 pops from the end } }); JSON.stringify(db.collection("test").find()); ``` Result: ```js [{ _id: "23231", shoppingList: [{ _id: 2, name: "Two" }, { _id: 3, name: "Three" }] }] ``` #### $rename Renames a field in any documents that match the query with a new name. ```js db.collection("test").update({ <query> }, { $rename: { <field>: <newName> } }); ``` The following example renames the "action" field to "jelly": ```js db.collection("test").insert({ _id: "23231", action: "Foo" }); db.collection("test").update({ _id: "23231" }, { $rename: { action: "jelly" } }); JSON.stringify(db.collection("test").find()); ``` Result: ```js [{ _id: "23231", jelly: "Foo" }] ``` #### $replace > PLEASE NOTE: $replace can only be used on the top-level. Nested $replace operators are not currently supported and may cause unexpected behaviour. The $replace operator will take the passed object and overwrite the target document with the object's keys and values. If a key exists in the existing document but not in the passed object, ForerunnerDB will remove the key from the document. The $replace operator is equivalent to calling MongoDB's update without using a MongoDB $set operator. When using $replace the primary key field will *NEVER* be replaced even if it is specified. If you wish to change a record's primary key id, remove