UNPKG

flow-nexus

Version:

🚀 AI-Powered Swarm Intelligence Platform - Gamified MCP Development with 70+ Tools

748 lines (637 loc) • 20.6 kB
/** * Distributed Neural Network Sandbox Integration * Deploys neural networks across E2B sandboxes using DAA-WASM components */ import { db, supabase } from './supabase.js'; import { E2BService } from './e2b-service.js'; import { createHash } from 'crypto'; import { neuralClusterStore } from './neural-cluster-store.js'; export class DistributedNeuralSandbox { constructor() { // Use persistent store instead of local maps this.store = neuralClusterStore; // Keep some local state for WASM and DAA modules this.wasmModules = new Map(); this.daaAgents = new Map(); } /** * Initialize a distributed neural network cluster */ async initializeNeuralCluster(config) { const clusterId = `dnc_${createHash('sha256') .update(`${Date.now()}_${config.name}`) .digest('hex') .slice(0, 12)}`; const cluster = { id: clusterId, name: config.name || 'distributed-neural-cluster', topology: config.topology || 'mesh', nodes: [], neuralArchitecture: config.architecture || 'transformer', wasmOptimization: config.wasmOptimization !== false, daaEnabled: config.daaEnabled !== false, createdAt: new Date().toISOString(), status: 'initializing', metadata: config.metadata || {} }; // Store cluster persistently await this.store.initCluster(clusterId, cluster); // Initialize DAA coordination layer if (cluster.daaEnabled) { await this.initializeDAA(clusterId, config); } // Deploy WASM neural modules if (cluster.wasmOptimization) { await this.deployWASMModules(clusterId, config); } return cluster; } /** * Deploy a neural network node in an E2B sandbox */ async deployNeuralNode(clusterId, nodeConfig) { const cluster = await this.store.getCluster(clusterId); if (!cluster) { throw new Error(`Cluster ${clusterId} not found`); } const nodeId = `node_${createHash('sha256') .update(`${clusterId}_${Date.now()}_${nodeConfig.role}`) .digest('hex') .slice(0, 8)}`; // Create E2B sandbox with neural runtime const sandboxConfig = { template: nodeConfig.template || 'neural-runtime', name: `${cluster.name}_${nodeId}`, env_vars: { CLUSTER_ID: clusterId, NODE_ID: nodeId, NODE_ROLE: nodeConfig.role, NEURAL_ARCH: cluster.neuralArchitecture, WASM_ENABLED: cluster.wasmOptimization.toString(), DAA_ENABLED: cluster.daaEnabled.toString(), ...nodeConfig.env_vars }, metadata: { cluster_id: clusterId, node_id: nodeId, role: nodeConfig.role, capabilities: nodeConfig.capabilities || [] } }; // Deploy neural runtime code const neuralRuntime = this.generateNeuralRuntime(nodeConfig); const node = { id: nodeId, clusterId, role: nodeConfig.role, sandboxId: null, status: 'deploying', capabilities: nodeConfig.capabilities || [], connections: [], neuralModel: nodeConfig.model || 'base', wasmModules: [], daaAgent: null, metrics: { throughput: 0, latency: 0, accuracy: 0 } }; // Create sandbox through E2B try { // Get current session user ID or use null const session = await db.getSession(); const userId = session?.user?.id || null; const sandbox = await db.createSandbox( sandboxConfig.template, sandboxConfig.name, userId ); node.sandboxId = sandbox.id; node.status = 'deployed'; // Initialize neural components in sandbox await this.initializeNeuralComponents(node, neuralRuntime); // Store node persistently await this.store.addNode(clusterId, node); return node; } catch (error) { node.status = 'failed'; node.error = error.message; return node; } } /** * Initialize DAA (Decentralized Autonomous Agents) layer */ async initializeDAA(clusterId, config) { const daaConfig = { cluster_id: clusterId, consensus_mechanism: config.consensus || 'proof-of-learning', coordination_mode: config.coordinationMode || 'autonomous', learning_rate: config.learningRate || 0.001, meta_learning: config.metaLearning !== false, knowledge_sharing: config.knowledgeSharing !== false }; // Create DAA coordinator agent const coordinatorAgent = { id: `daa_coord_${clusterId}`, type: 'coordinator', capabilities: [ 'consensus_building', 'task_distribution', 'knowledge_aggregation', 'performance_optimization' ], cognitivePattern: 'systems', autonomyLevel: 0.9, learningEnabled: true }; this.daaAgents.set(clusterId, { coordinator: coordinatorAgent, workers: [], config: daaConfig }); return coordinatorAgent; } /** * Deploy WASM neural network modules */ async deployWASMModules(clusterId, config) { const modules = { // Core neural operations matrix_ops: { name: 'neural_matrix_ops', binary: this.generateWASMModule('matrix_operations'), exports: ['matmul', 'conv2d', 'pooling', 'activation'], optimization: 'simd' }, // Attention mechanisms attention: { name: 'neural_attention', binary: this.generateWASMModule('attention_layer'), exports: ['self_attention', 'cross_attention', 'multi_head'], optimization: 'parallel' }, // Loss and optimization optimizer: { name: 'neural_optimizer', binary: this.generateWASMModule('optimization'), exports: ['adam', 'sgd', 'rmsprop', 'gradient_descent'], optimization: 'vectorized' }, // Distributed operations distributed: { name: 'neural_distributed', binary: this.generateWASMModule('distributed_ops'), exports: ['all_reduce', 'broadcast', 'gather', 'scatter'], optimization: 'async' } }; this.wasmModules.set(clusterId, modules); return modules; } /** * Generate neural runtime code for sandbox deployment */ generateNeuralRuntime(nodeConfig) { return ` // Distributed Neural Network Runtime // Node Role: ${nodeConfig.role} import { NeuralCore } from '@neural/core'; import { WASMAccelerator } from '@neural/wasm'; import { DAAClient } from '@daa/client'; import { DistributedOps } from '@neural/distributed'; class NeuralNode { constructor(config) { this.nodeId = process.env.NODE_ID; this.clusterId = process.env.CLUSTER_ID; this.role = process.env.NODE_ROLE; // Initialize neural core this.neural = new NeuralCore({ architecture: process.env.NEURAL_ARCH, device: 'wasm', precision: 'float32' }); // Initialize WASM accelerator if (process.env.WASM_ENABLED === 'true') { this.wasm = new WASMAccelerator(); await this.wasm.loadModules([ 'matrix_ops', 'attention', 'optimizer', 'distributed' ]); } // Initialize DAA client if (process.env.DAA_ENABLED === 'true') { this.daa = new DAAClient({ agentId: this.nodeId, clusterId: this.clusterId, role: this.role, autonomy: ${nodeConfig.autonomy || 0.8} }); } // Initialize distributed operations this.distributed = new DistributedOps({ nodeId: this.nodeId, topology: '${nodeConfig.topology || 'mesh'}', backend: this.wasm ? 'wasm' : 'js' }); this.model = null; this.isTraining = false; } async initialize() { console.log(\`Neural node \${this.nodeId} initializing...\`); // Load model based on role await this.loadModel(); // Connect to cluster await this.connectToCluster(); // Start DAA agent if enabled if (this.daa) { await this.daa.start(); this.daa.on('task', this.handleTask.bind(this)); this.daa.on('knowledge', this.handleKnowledge.bind(this)); } // Start metrics reporting this.startMetricsReporting(); console.log(\`Neural node \${this.nodeId} ready\`); } async loadModel() { const modelConfig = { layers: ${JSON.stringify(nodeConfig.layers || [ { type: 'dense', units: 128, activation: 'relu' }, { type: 'dropout', rate: 0.2 }, { type: 'dense', units: 64, activation: 'relu' }, { type: 'dense', units: 10, activation: 'softmax' } ])}, optimizer: '${nodeConfig.optimizer || 'adam'}', loss: '${nodeConfig.loss || 'categorical_crossentropy'}', metrics: ${JSON.stringify(nodeConfig.metrics || ['accuracy'])} }; this.model = await this.neural.createModel(modelConfig); // Use WASM acceleration if available if (this.wasm) { this.model.accelerate(this.wasm); } } async connectToCluster() { // Discover other nodes in cluster const nodes = await this.distributed.discoverNodes(this.clusterId); // Establish connections based on topology for (const node of nodes) { if (this.shouldConnect(node)) { await this.distributed.connect(node.id); } } // Join distributed training group await this.distributed.joinGroup('training'); } async train(data, labels, config = {}) { this.isTraining = true; const batchSize = config.batchSize || 32; const epochs = config.epochs || 10; for (let epoch = 0; epoch < epochs; epoch++) { const batches = this.createBatches(data, labels, batchSize); for (const batch of batches) { // Forward pass const predictions = await this.model.predict(batch.data); // Calculate loss const loss = await this.model.calculateLoss(predictions, batch.labels); // Backward pass const gradients = await this.model.backward(loss); // Distributed gradient aggregation if (this.distributed.isConnected()) { const aggregatedGradients = await this.distributed.allReduce( gradients, 'mean' ); await this.model.applyGradients(aggregatedGradients); } else { await this.model.applyGradients(gradients); } // Report progress if (this.daa) { await this.daa.reportProgress({ epoch, batch: batches.indexOf(batch), loss: loss.value, metrics: await this.model.getMetrics() }); } } // Synchronize with cluster at epoch boundary await this.distributed.barrier(); } this.isTraining = false; return this.model.getMetrics(); } async predict(data) { // Use WASM acceleration for inference if (this.wasm) { return await this.wasm.predict(this.model, data); } return await this.model.predict(data); } async handleTask(task) { console.log(\`Received task: \${task.type}\`); switch (task.type) { case 'train': const result = await this.train(task.data, task.labels, task.config); return { success: true, result }; case 'predict': const predictions = await this.predict(task.data); return { success: true, predictions }; case 'optimize': await this.optimizeModel(task.target); return { success: true }; case 'federated_update': await this.applyFederatedUpdate(task.weights); return { success: true }; default: return { success: false, error: 'Unknown task type' }; } } async handleKnowledge(knowledge) { // Apply transferred knowledge from other agents if (knowledge.type === 'weights') { await this.model.mergeWeights(knowledge.weights, knowledge.alpha); } else if (knowledge.type === 'hyperparameters') { await this.model.updateHyperparameters(knowledge.params); } } async optimizeModel(target) { // Use WASM-accelerated optimization if (this.wasm) { const optimized = await this.wasm.optimize(this.model, target); await this.model.loadWeights(optimized.weights); } } async applyFederatedUpdate(weights) { // Apply federated learning update await this.model.federatedAverage(weights); // Broadcast update to cluster await this.distributed.broadcast({ type: 'model_update', version: this.model.version, timestamp: Date.now() }); } startMetricsReporting() { setInterval(async () => { const metrics = { nodeId: this.nodeId, role: this.role, isTraining: this.isTraining, modelVersion: this.model?.version, performance: await this.getPerformanceMetrics(), connections: this.distributed.getConnections().length, timestamp: Date.now() }; // Report to DAA coordinator if (this.daa) { await this.daa.reportMetrics(metrics); } // Log locally console.log('Metrics:', metrics); }, 5000); } async getPerformanceMetrics() { return { throughput: this.wasm ? await this.wasm.getThroughput() : 0, latency: this.wasm ? await this.wasm.getLatency() : 0, memory: process.memoryUsage().heapUsed / 1024 / 1024, cpu: process.cpuUsage().system / 1000000 }; } shouldConnect(node) { // Connection logic based on role and topology if (this.role === 'parameter_server') { return true; // Connect to all nodes } if (node.role === 'parameter_server') { return true; // Workers connect to parameter server } // Mesh topology: connect to nearby nodes return Math.random() > 0.5; } createBatches(data, labels, batchSize) { const batches = []; for (let i = 0; i < data.length; i += batchSize) { batches.push({ data: data.slice(i, i + batchSize), labels: labels.slice(i, i + batchSize) }); } return batches; } } // Start the neural node const node = new NeuralNode(${JSON.stringify(nodeConfig)}); node.initialize().catch(console.error); // Handle shutdown gracefully process.on('SIGTERM', async () => { console.log('Shutting down neural node...'); if (node.daa) { await node.daa.shutdown(); } if (node.distributed) { await node.distributed.disconnect(); } process.exit(0); }); `.trim(); } /** * Generate WASM module binary (mock - would be actual WASM in production) */ generateWASMModule(moduleType) { // This would be actual compiled WASM binary in production // For now, returning a mock identifier return `wasm_module_${moduleType}_${Date.now()}`; } /** * Initialize neural components in sandbox */ async initializeNeuralComponents(node, runtime) { // This would execute the runtime code in the sandbox // For now, we'll simulate the initialization // Load WASM modules if (node.wasmModules.length > 0) { // Debug: Loading WASM modules for node } // Initialize DAA agent if (node.daaAgent) { // Debug: Initializing DAA agent for node } // Start neural runtime (logging disabled to prevent JSON response corruption) return true; } /** * Connect nodes in the cluster */ async connectNodes(clusterId, topology = 'mesh') { const cluster = await this.store.getCluster(clusterId); if (!cluster) { throw new Error(`Cluster ${clusterId} not found`); } const connections = []; switch (topology) { case 'mesh': // Full mesh - all nodes connected for (let i = 0; i < cluster.nodes.length; i++) { for (let j = i + 1; j < cluster.nodes.length; j++) { connections.push({ from: cluster.nodes[i].id, to: cluster.nodes[j].id, type: 'bidirectional' }); } } break; case 'ring': // Ring topology for (let i = 0; i < cluster.nodes.length; i++) { const next = (i + 1) % cluster.nodes.length; connections.push({ from: cluster.nodes[i].id, to: cluster.nodes[next].id, type: 'unidirectional' }); } break; case 'star': // Star topology with first node as hub if (cluster.nodes.length > 0) { const hub = cluster.nodes[0]; for (let i = 1; i < cluster.nodes.length; i++) { connections.push({ from: hub.id, to: cluster.nodes[i].id, type: 'bidirectional' }); } } break; case 'hierarchical': // Tree structure for (let i = 1; i < cluster.nodes.length; i++) { const parent = Math.floor((i - 1) / 2); connections.push({ from: cluster.nodes[parent].id, to: cluster.nodes[i].id, type: 'bidirectional' }); } break; } // Store connections persistently await this.store.updateConnections(clusterId, connections); return connections; } /** * Start distributed training */ async startDistributedTraining(clusterId, trainingConfig) { const cluster = await this.store.getCluster(clusterId); if (!cluster) { throw new Error(`Cluster ${clusterId} not found`); } const sessionId = `training_${Date.now()}`; const session = { id: sessionId, clusterId, status: 'training', startTime: Date.now(), config: trainingConfig, metrics: { loss: [], accuracy: [], throughput: [] } }; // Store session persistently await this.store.addSession(sessionId, session); // Distribute training task to all nodes const tasks = cluster.nodes.map(node => ({ nodeId: node.id, task: { type: 'train', data: trainingConfig.data, labels: trainingConfig.labels, config: { epochs: trainingConfig.epochs || 10, batchSize: trainingConfig.batchSize || 32, learningRate: trainingConfig.learningRate || 0.001 } } })); // If DAA is enabled, use autonomous coordination if (cluster.daaEnabled) { const daaAgents = this.daaAgents.get(clusterId); if (daaAgents) { await this.coordinateWithDAA(daaAgents, tasks); } } session.status = 'running'; cluster.status = 'training'; return session; } /** * Coordinate training with DAA agents */ async coordinateWithDAA(daaAgents, tasks) { const coordinator = daaAgents.coordinator; // Distribute tasks autonomously const distribution = { strategy: 'adaptive', tasks, consensus: 'proof-of-learning', knowledgeSharing: true }; // DAA agents will handle task distribution and coordination // Debug: DAA coordinator distributing tasks return distribution; } /** * Get cluster status */ async getClusterStatus(clusterId) { const cluster = await this.store.getCluster(clusterId); if (!cluster) { return null; } return { ...cluster, nodeCount: cluster.nodes?.length || 0, activeConnections: cluster.connections?.length || 0, daaStatus: this.daaAgents.has(clusterId) ? 'active' : 'inactive', wasmStatus: this.wasmModules.has(clusterId) ? 'loaded' : 'not-loaded', trainingSessions: 0 // Could query from store if needed }; } /** * Terminate cluster */ async terminateCluster(clusterId) { const cluster = await this.store.getCluster(clusterId); if (!cluster) { return false; } // Terminate all sandboxes if (cluster.nodes) { for (const node of cluster.nodes) { if (node.sandboxId) { // Would terminate sandbox through E2B here // Debug: Terminating sandbox } } } // Clean up local resources this.daaAgents.delete(clusterId); this.wasmModules.delete(clusterId); // Remove from persistent store await this.store.deleteCluster(clusterId); return true; } } export const distributedNeuralSandbox = new DistributedNeuralSandbox();