flow-nexus
Version:
🚀 AI-Powered Swarm Intelligence Platform - Gamified MCP Development with 70+ Tools
748 lines (637 loc) • 20.6 kB
JavaScript
/**
* Distributed Neural Network Sandbox Integration
* Deploys neural networks across E2B sandboxes using DAA-WASM components
*/
import { db, supabase } from './supabase.js';
import { E2BService } from './e2b-service.js';
import { createHash } from 'crypto';
import { neuralClusterStore } from './neural-cluster-store.js';
export class DistributedNeuralSandbox {
constructor() {
// Use persistent store instead of local maps
this.store = neuralClusterStore;
// Keep some local state for WASM and DAA modules
this.wasmModules = new Map();
this.daaAgents = new Map();
}
/**
* Initialize a distributed neural network cluster
*/
async initializeNeuralCluster(config) {
const clusterId = `dnc_${createHash('sha256')
.update(`${Date.now()}_${config.name}`)
.digest('hex')
.slice(0, 12)}`;
const cluster = {
id: clusterId,
name: config.name || 'distributed-neural-cluster',
topology: config.topology || 'mesh',
nodes: [],
neuralArchitecture: config.architecture || 'transformer',
wasmOptimization: config.wasmOptimization !== false,
daaEnabled: config.daaEnabled !== false,
createdAt: new Date().toISOString(),
status: 'initializing',
metadata: config.metadata || {}
};
// Store cluster persistently
await this.store.initCluster(clusterId, cluster);
// Initialize DAA coordination layer
if (cluster.daaEnabled) {
await this.initializeDAA(clusterId, config);
}
// Deploy WASM neural modules
if (cluster.wasmOptimization) {
await this.deployWASMModules(clusterId, config);
}
return cluster;
}
/**
* Deploy a neural network node in an E2B sandbox
*/
async deployNeuralNode(clusterId, nodeConfig) {
const cluster = await this.store.getCluster(clusterId);
if (!cluster) {
throw new Error(`Cluster ${clusterId} not found`);
}
const nodeId = `node_${createHash('sha256')
.update(`${clusterId}_${Date.now()}_${nodeConfig.role}`)
.digest('hex')
.slice(0, 8)}`;
// Create E2B sandbox with neural runtime
const sandboxConfig = {
template: nodeConfig.template || 'neural-runtime',
name: `${cluster.name}_${nodeId}`,
env_vars: {
CLUSTER_ID: clusterId,
NODE_ID: nodeId,
NODE_ROLE: nodeConfig.role,
NEURAL_ARCH: cluster.neuralArchitecture,
WASM_ENABLED: cluster.wasmOptimization.toString(),
DAA_ENABLED: cluster.daaEnabled.toString(),
...nodeConfig.env_vars
},
metadata: {
cluster_id: clusterId,
node_id: nodeId,
role: nodeConfig.role,
capabilities: nodeConfig.capabilities || []
}
};
// Deploy neural runtime code
const neuralRuntime = this.generateNeuralRuntime(nodeConfig);
const node = {
id: nodeId,
clusterId,
role: nodeConfig.role,
sandboxId: null,
status: 'deploying',
capabilities: nodeConfig.capabilities || [],
connections: [],
neuralModel: nodeConfig.model || 'base',
wasmModules: [],
daaAgent: null,
metrics: {
throughput: 0,
latency: 0,
accuracy: 0
}
};
// Create sandbox through E2B
try {
// Get current session user ID or use null
const session = await db.getSession();
const userId = session?.user?.id || null;
const sandbox = await db.createSandbox(
sandboxConfig.template,
sandboxConfig.name,
userId
);
node.sandboxId = sandbox.id;
node.status = 'deployed';
// Initialize neural components in sandbox
await this.initializeNeuralComponents(node, neuralRuntime);
// Store node persistently
await this.store.addNode(clusterId, node);
return node;
} catch (error) {
node.status = 'failed';
node.error = error.message;
return node;
}
}
/**
* Initialize DAA (Decentralized Autonomous Agents) layer
*/
async initializeDAA(clusterId, config) {
const daaConfig = {
cluster_id: clusterId,
consensus_mechanism: config.consensus || 'proof-of-learning',
coordination_mode: config.coordinationMode || 'autonomous',
learning_rate: config.learningRate || 0.001,
meta_learning: config.metaLearning !== false,
knowledge_sharing: config.knowledgeSharing !== false
};
// Create DAA coordinator agent
const coordinatorAgent = {
id: `daa_coord_${clusterId}`,
type: 'coordinator',
capabilities: [
'consensus_building',
'task_distribution',
'knowledge_aggregation',
'performance_optimization'
],
cognitivePattern: 'systems',
autonomyLevel: 0.9,
learningEnabled: true
};
this.daaAgents.set(clusterId, {
coordinator: coordinatorAgent,
workers: [],
config: daaConfig
});
return coordinatorAgent;
}
/**
* Deploy WASM neural network modules
*/
async deployWASMModules(clusterId, config) {
const modules = {
// Core neural operations
matrix_ops: {
name: 'neural_matrix_ops',
binary: this.generateWASMModule('matrix_operations'),
exports: ['matmul', 'conv2d', 'pooling', 'activation'],
optimization: 'simd'
},
// Attention mechanisms
attention: {
name: 'neural_attention',
binary: this.generateWASMModule('attention_layer'),
exports: ['self_attention', 'cross_attention', 'multi_head'],
optimization: 'parallel'
},
// Loss and optimization
optimizer: {
name: 'neural_optimizer',
binary: this.generateWASMModule('optimization'),
exports: ['adam', 'sgd', 'rmsprop', 'gradient_descent'],
optimization: 'vectorized'
},
// Distributed operations
distributed: {
name: 'neural_distributed',
binary: this.generateWASMModule('distributed_ops'),
exports: ['all_reduce', 'broadcast', 'gather', 'scatter'],
optimization: 'async'
}
};
this.wasmModules.set(clusterId, modules);
return modules;
}
/**
* Generate neural runtime code for sandbox deployment
*/
generateNeuralRuntime(nodeConfig) {
return `
// Distributed Neural Network Runtime
// Node Role: ${nodeConfig.role}
import { NeuralCore } from '@neural/core';
import { WASMAccelerator } from '@neural/wasm';
import { DAAClient } from '@daa/client';
import { DistributedOps } from '@neural/distributed';
class NeuralNode {
constructor(config) {
this.nodeId = process.env.NODE_ID;
this.clusterId = process.env.CLUSTER_ID;
this.role = process.env.NODE_ROLE;
// Initialize neural core
this.neural = new NeuralCore({
architecture: process.env.NEURAL_ARCH,
device: 'wasm',
precision: 'float32'
});
// Initialize WASM accelerator
if (process.env.WASM_ENABLED === 'true') {
this.wasm = new WASMAccelerator();
await this.wasm.loadModules([
'matrix_ops',
'attention',
'optimizer',
'distributed'
]);
}
// Initialize DAA client
if (process.env.DAA_ENABLED === 'true') {
this.daa = new DAAClient({
agentId: this.nodeId,
clusterId: this.clusterId,
role: this.role,
autonomy: ${nodeConfig.autonomy || 0.8}
});
}
// Initialize distributed operations
this.distributed = new DistributedOps({
nodeId: this.nodeId,
topology: '${nodeConfig.topology || 'mesh'}',
backend: this.wasm ? 'wasm' : 'js'
});
this.model = null;
this.isTraining = false;
}
async initialize() {
console.log(\`Neural node \${this.nodeId} initializing...\`);
// Load model based on role
await this.loadModel();
// Connect to cluster
await this.connectToCluster();
// Start DAA agent if enabled
if (this.daa) {
await this.daa.start();
this.daa.on('task', this.handleTask.bind(this));
this.daa.on('knowledge', this.handleKnowledge.bind(this));
}
// Start metrics reporting
this.startMetricsReporting();
console.log(\`Neural node \${this.nodeId} ready\`);
}
async loadModel() {
const modelConfig = {
layers: ${JSON.stringify(nodeConfig.layers || [
{ type: 'dense', units: 128, activation: 'relu' },
{ type: 'dropout', rate: 0.2 },
{ type: 'dense', units: 64, activation: 'relu' },
{ type: 'dense', units: 10, activation: 'softmax' }
])},
optimizer: '${nodeConfig.optimizer || 'adam'}',
loss: '${nodeConfig.loss || 'categorical_crossentropy'}',
metrics: ${JSON.stringify(nodeConfig.metrics || ['accuracy'])}
};
this.model = await this.neural.createModel(modelConfig);
// Use WASM acceleration if available
if (this.wasm) {
this.model.accelerate(this.wasm);
}
}
async connectToCluster() {
// Discover other nodes in cluster
const nodes = await this.distributed.discoverNodes(this.clusterId);
// Establish connections based on topology
for (const node of nodes) {
if (this.shouldConnect(node)) {
await this.distributed.connect(node.id);
}
}
// Join distributed training group
await this.distributed.joinGroup('training');
}
async train(data, labels, config = {}) {
this.isTraining = true;
const batchSize = config.batchSize || 32;
const epochs = config.epochs || 10;
for (let epoch = 0; epoch < epochs; epoch++) {
const batches = this.createBatches(data, labels, batchSize);
for (const batch of batches) {
// Forward pass
const predictions = await this.model.predict(batch.data);
// Calculate loss
const loss = await this.model.calculateLoss(predictions, batch.labels);
// Backward pass
const gradients = await this.model.backward(loss);
// Distributed gradient aggregation
if (this.distributed.isConnected()) {
const aggregatedGradients = await this.distributed.allReduce(
gradients,
'mean'
);
await this.model.applyGradients(aggregatedGradients);
} else {
await this.model.applyGradients(gradients);
}
// Report progress
if (this.daa) {
await this.daa.reportProgress({
epoch,
batch: batches.indexOf(batch),
loss: loss.value,
metrics: await this.model.getMetrics()
});
}
}
// Synchronize with cluster at epoch boundary
await this.distributed.barrier();
}
this.isTraining = false;
return this.model.getMetrics();
}
async predict(data) {
// Use WASM acceleration for inference
if (this.wasm) {
return await this.wasm.predict(this.model, data);
}
return await this.model.predict(data);
}
async handleTask(task) {
console.log(\`Received task: \${task.type}\`);
switch (task.type) {
case 'train':
const result = await this.train(task.data, task.labels, task.config);
return { success: true, result };
case 'predict':
const predictions = await this.predict(task.data);
return { success: true, predictions };
case 'optimize':
await this.optimizeModel(task.target);
return { success: true };
case 'federated_update':
await this.applyFederatedUpdate(task.weights);
return { success: true };
default:
return { success: false, error: 'Unknown task type' };
}
}
async handleKnowledge(knowledge) {
// Apply transferred knowledge from other agents
if (knowledge.type === 'weights') {
await this.model.mergeWeights(knowledge.weights, knowledge.alpha);
} else if (knowledge.type === 'hyperparameters') {
await this.model.updateHyperparameters(knowledge.params);
}
}
async optimizeModel(target) {
// Use WASM-accelerated optimization
if (this.wasm) {
const optimized = await this.wasm.optimize(this.model, target);
await this.model.loadWeights(optimized.weights);
}
}
async applyFederatedUpdate(weights) {
// Apply federated learning update
await this.model.federatedAverage(weights);
// Broadcast update to cluster
await this.distributed.broadcast({
type: 'model_update',
version: this.model.version,
timestamp: Date.now()
});
}
startMetricsReporting() {
setInterval(async () => {
const metrics = {
nodeId: this.nodeId,
role: this.role,
isTraining: this.isTraining,
modelVersion: this.model?.version,
performance: await this.getPerformanceMetrics(),
connections: this.distributed.getConnections().length,
timestamp: Date.now()
};
// Report to DAA coordinator
if (this.daa) {
await this.daa.reportMetrics(metrics);
}
// Log locally
console.log('Metrics:', metrics);
}, 5000);
}
async getPerformanceMetrics() {
return {
throughput: this.wasm ? await this.wasm.getThroughput() : 0,
latency: this.wasm ? await this.wasm.getLatency() : 0,
memory: process.memoryUsage().heapUsed / 1024 / 1024,
cpu: process.cpuUsage().system / 1000000
};
}
shouldConnect(node) {
// Connection logic based on role and topology
if (this.role === 'parameter_server') {
return true; // Connect to all nodes
}
if (node.role === 'parameter_server') {
return true; // Workers connect to parameter server
}
// Mesh topology: connect to nearby nodes
return Math.random() > 0.5;
}
createBatches(data, labels, batchSize) {
const batches = [];
for (let i = 0; i < data.length; i += batchSize) {
batches.push({
data: data.slice(i, i + batchSize),
labels: labels.slice(i, i + batchSize)
});
}
return batches;
}
}
// Start the neural node
const node = new NeuralNode(${JSON.stringify(nodeConfig)});
node.initialize().catch(console.error);
// Handle shutdown gracefully
process.on('SIGTERM', async () => {
console.log('Shutting down neural node...');
if (node.daa) {
await node.daa.shutdown();
}
if (node.distributed) {
await node.distributed.disconnect();
}
process.exit(0);
});
`.trim();
}
/**
* Generate WASM module binary (mock - would be actual WASM in production)
*/
generateWASMModule(moduleType) {
// This would be actual compiled WASM binary in production
// For now, returning a mock identifier
return `wasm_module_${moduleType}_${Date.now()}`;
}
/**
* Initialize neural components in sandbox
*/
async initializeNeuralComponents(node, runtime) {
// This would execute the runtime code in the sandbox
// For now, we'll simulate the initialization
// Load WASM modules
if (node.wasmModules.length > 0) {
// Debug: Loading WASM modules for node
}
// Initialize DAA agent
if (node.daaAgent) {
// Debug: Initializing DAA agent for node
}
// Start neural runtime (logging disabled to prevent JSON response corruption)
return true;
}
/**
* Connect nodes in the cluster
*/
async connectNodes(clusterId, topology = 'mesh') {
const cluster = await this.store.getCluster(clusterId);
if (!cluster) {
throw new Error(`Cluster ${clusterId} not found`);
}
const connections = [];
switch (topology) {
case 'mesh':
// Full mesh - all nodes connected
for (let i = 0; i < cluster.nodes.length; i++) {
for (let j = i + 1; j < cluster.nodes.length; j++) {
connections.push({
from: cluster.nodes[i].id,
to: cluster.nodes[j].id,
type: 'bidirectional'
});
}
}
break;
case 'ring':
// Ring topology
for (let i = 0; i < cluster.nodes.length; i++) {
const next = (i + 1) % cluster.nodes.length;
connections.push({
from: cluster.nodes[i].id,
to: cluster.nodes[next].id,
type: 'unidirectional'
});
}
break;
case 'star':
// Star topology with first node as hub
if (cluster.nodes.length > 0) {
const hub = cluster.nodes[0];
for (let i = 1; i < cluster.nodes.length; i++) {
connections.push({
from: hub.id,
to: cluster.nodes[i].id,
type: 'bidirectional'
});
}
}
break;
case 'hierarchical':
// Tree structure
for (let i = 1; i < cluster.nodes.length; i++) {
const parent = Math.floor((i - 1) / 2);
connections.push({
from: cluster.nodes[parent].id,
to: cluster.nodes[i].id,
type: 'bidirectional'
});
}
break;
}
// Store connections persistently
await this.store.updateConnections(clusterId, connections);
return connections;
}
/**
* Start distributed training
*/
async startDistributedTraining(clusterId, trainingConfig) {
const cluster = await this.store.getCluster(clusterId);
if (!cluster) {
throw new Error(`Cluster ${clusterId} not found`);
}
const sessionId = `training_${Date.now()}`;
const session = {
id: sessionId,
clusterId,
status: 'training',
startTime: Date.now(),
config: trainingConfig,
metrics: {
loss: [],
accuracy: [],
throughput: []
}
};
// Store session persistently
await this.store.addSession(sessionId, session);
// Distribute training task to all nodes
const tasks = cluster.nodes.map(node => ({
nodeId: node.id,
task: {
type: 'train',
data: trainingConfig.data,
labels: trainingConfig.labels,
config: {
epochs: trainingConfig.epochs || 10,
batchSize: trainingConfig.batchSize || 32,
learningRate: trainingConfig.learningRate || 0.001
}
}
}));
// If DAA is enabled, use autonomous coordination
if (cluster.daaEnabled) {
const daaAgents = this.daaAgents.get(clusterId);
if (daaAgents) {
await this.coordinateWithDAA(daaAgents, tasks);
}
}
session.status = 'running';
cluster.status = 'training';
return session;
}
/**
* Coordinate training with DAA agents
*/
async coordinateWithDAA(daaAgents, tasks) {
const coordinator = daaAgents.coordinator;
// Distribute tasks autonomously
const distribution = {
strategy: 'adaptive',
tasks,
consensus: 'proof-of-learning',
knowledgeSharing: true
};
// DAA agents will handle task distribution and coordination
// Debug: DAA coordinator distributing tasks
return distribution;
}
/**
* Get cluster status
*/
async getClusterStatus(clusterId) {
const cluster = await this.store.getCluster(clusterId);
if (!cluster) {
return null;
}
return {
...cluster,
nodeCount: cluster.nodes?.length || 0,
activeConnections: cluster.connections?.length || 0,
daaStatus: this.daaAgents.has(clusterId) ? 'active' : 'inactive',
wasmStatus: this.wasmModules.has(clusterId) ? 'loaded' : 'not-loaded',
trainingSessions: 0 // Could query from store if needed
};
}
/**
* Terminate cluster
*/
async terminateCluster(clusterId) {
const cluster = await this.store.getCluster(clusterId);
if (!cluster) {
return false;
}
// Terminate all sandboxes
if (cluster.nodes) {
for (const node of cluster.nodes) {
if (node.sandboxId) {
// Would terminate sandbox through E2B here
// Debug: Terminating sandbox
}
}
}
// Clean up local resources
this.daaAgents.delete(clusterId);
this.wasmModules.delete(clusterId);
// Remove from persistent store
await this.store.deleteCluster(clusterId);
return true;
}
}
export const distributedNeuralSandbox = new DistributedNeuralSandbox();