UNPKG

flo-poly

Version:

A practical, root-focused JavaScript polynomial utility library.

52 lines (43 loc) 2.39 kB
import { twoProduct as twoProduct_ } from "big-float-ts"; import { twoSum as twoSum_ } from "big-float-ts"; // We *have* to do the below❗ The assignee is a getter❗ The assigned is a pure function❗ Otherwise code is too slow❗ const twoSum = twoSum_; const twoProduct = twoProduct_; /** * Returns an EFT (error free transformation) for the Horner evaluation of a * polymial at a specified x. The result is returned as an object with * properties: r̂ -> the calculated evaluation, pπ and pσ -> two polynomials * with coefficients around 2^53 times smaller than the input polynomial. * * * r̂ + pπ(x) + pσ(x) = the *exact* evaluation (no error) * * * see [Algorithms for Accurate, Validated and Fast Polynomial Evaluation, *Stef Graillat, Philippe Langlois and Nicolas Louvet*](https://projecteuclid.org/download/pdf_1/euclid.jjiam/1265033778) * * see also [*Philippe Langlois, Nicolas Louvet.* Faithful Polynomial Evaluation with Compensated Horner Algorithm. ARITH18: 18th IEEE International Symposium on Computer Arithmetic, Jun 2007, Montpellier, France. pp.141–149. ffhal-00107222f](https://hal.archives-ouvertes.fr/hal-00107222/document) * * see also [Horner's Method](https://en.wikipedia.org/wiki/Horner%27s_method) * * @param p a polynomial with coefficients given densely as an array of double * floating point numbers from highest to lowest power, e.g. `[5,-3,0]` * represents the polynomial `5x^2 - 3x` * @param x the value at which to evaluate the polynomial * * @doc */ function EFTHorner( p: number[], x: number): { r̂: number, pπ: number[], pσ: number[] } { const pπ: number[] = []; // A polynomial containing part of the error const pσ: number[] = []; // Another polynomial containing part of the error let σ: number; let r̂ = p[0]; for (let i=1; i<p.length; i++) { const [π,pi] = twoProduct(r̂,x); [σ,r̂] = twoSum(pi, p[i]); // inlined //r̂ = pi + p[i]; const bv = r̂ - pi; σ = (pi - (x-bv)) + (p[i]-bv); pπ.push(π); pσ.push(σ); } return { r̂, pπ, pσ } } // inlined //const pπ: number[] = []; const pσ: number[] = []; const σ: number; const r̂ = p[0]; for (const i=1; i<p.length; i++) { const [π,pi] = twoProduct(r̂,x); [σ,r̂] = twoSum(pi, p[i]); pπ.push(π); pσ.push(σ); } return { r̂, pπ, pσ } export { EFTHorner }