UNPKG

flexsearch-ts

Version:

Next-Generation full text search library with zero dependencies.

397 lines (326 loc) 9.53 kB
import { create_object, concat } from "./common.js"; /** * Implementation based on Array.includes() provides better performance, * but it needs at least one word in the query which is less frequent. * Also on large indexes it does not scale well performance-wise. * This strategy also lacks of suggestion capabilities (matching & sorting). * * @param arrays * @param limit * @param offset * @param {boolean|Array=} suggest * @returns {Array} */ // export function intersect(arrays, limit, offset, suggest) { // // const length = arrays.length; // let result = []; // let check; // // // determine shortest array and collect results // // from the sparse relevance arrays // // let smallest_size; // let smallest_arr; // let smallest_index; // // for(let x = 0; x < length; x++){ // // const arr = arrays[x]; // const len = arr.length; // // let size = 0; // // for(let y = 0, tmp; y < len; y++){ // // tmp = arr[y]; // // if(tmp){ // // size += tmp.length; // } // } // // if(!smallest_size || (size < smallest_size)){ // // smallest_size = size; // smallest_arr = arr; // smallest_index = x; // } // } // // smallest_arr = smallest_arr.length === 1 ? // // smallest_arr[0] // : // concat(smallest_arr); // // if(suggest){ // // suggest = [smallest_arr]; // check = create_object(); // } // // let size = 0; // let steps = 0; // // // process terms in reversed order often results in better performance. // // the outer loop must be the words array, using the // // smallest array here disables the "fast fail" optimization. // // for(let x = length - 1; x >= 0; x--){ // // if(x !== smallest_index){ // // steps++; // // const word_arr = arrays[x]; // const word_arr_len = word_arr.length; // const new_arr = []; // // let count = 0; // // for(let z = 0, id; z < smallest_arr.length; z++){ // // id = smallest_arr[z]; // // let found; // // // process relevance in forward order (direction is // // important for adding IDs during the last round) // // for(let y = 0; y < word_arr_len; y++){ // // const arr = word_arr[y]; // // if(arr.length){ // // found = arr.includes(id); // // if(found){ // // // check if in last round // // if(steps === length - 1){ // // if(offset){ // // offset--; // } // else{ // // result[size++] = id; // // if(size === limit){ // // // fast path "end reached" // // return result; // } // } // // if(suggest){ // // check[id] = 1; // } // } // // break; // } // } // } // // if(found){ // // new_arr[count++] = id; // } // } // // if(suggest){ // // suggest[steps] = new_arr; // } // else if(!count){ // // return []; // } // // smallest_arr = new_arr; // } // } // // if(suggest){ // // // needs to iterate in reverse direction // // for(let x = suggest.length - 1, arr, len; x >= 0; x--){ // // arr = suggest[x]; // len = arr && arr.length; // // if(len){ // // for(let y = 0, id; y < len; y++){ // // id = arr[y]; // // if(!check[id]){ // // check[id] = 1; // // if(offset){ // // offset--; // } // else{ // // result[size++] = id; // // if(size === limit){ // // // fast path "end reached" // // return result; // } // } // } // } // } // } // } // // return result; // } /** * Implementation based on Object[key] provides better suggestions * capabilities and has less performance scaling issues on large indexes. * * @param arrays * @param limit * @param offset * @param {boolean|Array=} suggest * @returns {Array} */ export function intersect(arrays, limit, offset, suggest) { const length = arrays.length; let result = []; let check; let check_suggest; let size = 0; if(suggest){ suggest = []; } // process terms in reversed order often has advantage for the fast path "end reached". // also a reversed order prioritize the order of words from a query. for(let x = length - 1; x >= 0; x--){ const word_arr = arrays[x]; const word_arr_len = word_arr.length; const check_new = create_object(); let found = !check; // process relevance in forward order (direction is // important for adding IDs during the last round) for(let y = 0; y < word_arr_len; y++){ const arr = word_arr[y]; const arr_len = arr.length; if(arr_len){ // loop through IDs for(let z = 0, check_idx, id; z < arr_len; z++){ id = arr[z]; if(check){ if(check[id]){ // check if in last round if(!x){ if(offset){ offset--; } else{ result[size++] = id; if(size === limit){ // fast path "end reached" return result; } } } if(x || suggest){ check_new[id] = 1; } found = true; } if(suggest){ check_idx = (check_suggest[id] || 0) + 1; check_suggest[id] = check_idx; // do not adding IDs which are already included in the result (saves one loop) // the first intersection match has the check index 2, so shift by -2 if(check_idx < length){ const tmp = suggest[check_idx - 2] || (suggest[check_idx - 2] = []); tmp[tmp.length] = id; } } } else{ // pre-fill in first round check_new[id] = 1; } } } } if(suggest){ // re-use the first pre-filled check for suggestions check || (check_suggest = check_new); } else if(!found){ return []; } check = check_new; } if(suggest){ // needs to iterate in reverse direction for(let x = suggest.length - 1, arr, len; x >= 0; x--){ arr = suggest[x]; len = arr.length; for(let y = 0, id; y < len; y++){ id = arr[y]; if(!check[id]){ if(offset){ offset--; } else{ result[size++] = id; if(size === limit){ // fast path "end reached" return result; } } check[id] = 1; } } } } return result; } /** * @param mandatory * @param arrays * @returns {Array} */ export function intersect_union(mandatory, arrays) { const check = create_object(); const union = create_object(); const result = []; for(let x = 0; x < mandatory.length; x++){ check[mandatory[x]] = 1; } for(let x = 0, arr; x < arrays.length; x++){ arr = arrays[x]; for(let y = 0, id; y < arr.length; y++){ id = arr[y]; if(check[id]){ if(!union[id]){ union[id] = 1; result[result.length] = id; } } } } return result; }