flashbacker
Version:
Claude Code state management with session continuity and AI personas
89 lines • 3.99 kB
JavaScript
var __importDefault = (this && this.__importDefault) || function (mod) {
return (mod && mod.__esModule) ? mod : { "default": mod };
};
Object.defineProperty(exports, "__esModule", { value: true });
exports.FlashbackAgent = void 0;
const fs_extra_1 = __importDefault(require("fs-extra"));
const path_1 = __importDefault(require("path"));
// Use runtime requires to minimize TypeScript type-load for heavy AI SDK types
// eslint-disable-next-line @typescript-eslint/no-var-requires
const { generateText, stepCountIs } = require('ai');
// eslint-disable-next-line @typescript-eslint/no-var-requires
const { openai } = require('@ai-sdk/openai');
class FlashbackAgent {
async readAgentTemplate(projectDir, relativePath) {
const promptsRoot = path_1.default.join(projectDir, '.claude', 'flashback', 'prompts');
const fullPath = path_1.default.join(promptsRoot, relativePath);
const raw = await fs_extra_1.default.readFile(fullPath, 'utf-8');
// Simple parsing: first line as title (ignored), full file as system; prompt minimal
return {
system: raw,
prompt: 'Execute the agent workflow as instructed by the system prompt.',
};
}
async logAgentCost(projectDir, agentName, usage, toolCallsCount) {
try {
const logDir = path_1.default.join(projectDir, '.claude', 'flashback', 'log');
await fs_extra_1.default.ensureDir(logDir);
const logPath = path_1.default.join(logDir, 'agents.log');
const tokens = usage?.totalTokens ?? 0;
const line = `${new Date().toISOString()} agent=${agentName} tokens=${tokens} toolCalls=${toolCallsCount ?? 0}`;
await fs_extra_1.default.appendFile(logPath, line + '\n');
}
catch {
// best-effort logging
}
}
async prepareStepCompression(messages) {
if (!Array.isArray(messages) || messages.length <= 20)
return {};
const early = messages.slice(0, 5);
const recent = messages.slice(-10);
// Basic naive summary token to inform the model; real summarization can be added later
const summary = 'Previous context summarized for brevity.';
return {
messages: [
...early,
{ role: 'system', content: `Previous context: ${summary}` },
...recent,
],
};
}
async executeWithTemplate(options) {
const { projectDir, agentName, stepLimit, tokenBudget = 200000, tools = {}, templatePath } = options;
try {
const template = await this.readAgentTemplate(projectDir, templatePath);
const result = await generateText({
model: openai('gpt-5-nano'),
tools: tools,
stopWhen: stepCountIs(stepLimit),
system: template.system,
prompt: template.prompt,
prepareStep: async ({ messages }) => {
return this.prepareStepCompression(messages);
},
onStepFinish: async ({ usage, toolCalls }) => {
await this.logAgentCost(projectDir, agentName, usage, toolCalls?.length ?? 0);
if ((usage?.totalTokens ?? 0) > tokenBudget) {
throw new Error(`Agent ${agentName} exceeded token budget: ${usage?.totalTokens}`);
}
},
});
return {
success: true,
text: result.text,
toolCalls: result.steps?.flatMap((s) => s.toolCalls) ?? [],
tokensUsed: result.usage?.totalTokens,
};
}
catch (error) {
return {
success: false,
error: error instanceof Error ? error.message : String(error),
};
}
}
}
exports.FlashbackAgent = FlashbackAgent;
//# sourceMappingURL=flashback-agent.js.map
;