UNPKG

flashbacker

Version:

Claude Code state management with session continuity and AI personas

89 lines 3.99 kB
"use strict"; var __importDefault = (this && this.__importDefault) || function (mod) { return (mod && mod.__esModule) ? mod : { "default": mod }; }; Object.defineProperty(exports, "__esModule", { value: true }); exports.FlashbackAgent = void 0; const fs_extra_1 = __importDefault(require("fs-extra")); const path_1 = __importDefault(require("path")); // Use runtime requires to minimize TypeScript type-load for heavy AI SDK types // eslint-disable-next-line @typescript-eslint/no-var-requires const { generateText, stepCountIs } = require('ai'); // eslint-disable-next-line @typescript-eslint/no-var-requires const { openai } = require('@ai-sdk/openai'); class FlashbackAgent { async readAgentTemplate(projectDir, relativePath) { const promptsRoot = path_1.default.join(projectDir, '.claude', 'flashback', 'prompts'); const fullPath = path_1.default.join(promptsRoot, relativePath); const raw = await fs_extra_1.default.readFile(fullPath, 'utf-8'); // Simple parsing: first line as title (ignored), full file as system; prompt minimal return { system: raw, prompt: 'Execute the agent workflow as instructed by the system prompt.', }; } async logAgentCost(projectDir, agentName, usage, toolCallsCount) { try { const logDir = path_1.default.join(projectDir, '.claude', 'flashback', 'log'); await fs_extra_1.default.ensureDir(logDir); const logPath = path_1.default.join(logDir, 'agents.log'); const tokens = usage?.totalTokens ?? 0; const line = `${new Date().toISOString()} agent=${agentName} tokens=${tokens} toolCalls=${toolCallsCount ?? 0}`; await fs_extra_1.default.appendFile(logPath, line + '\n'); } catch { // best-effort logging } } async prepareStepCompression(messages) { if (!Array.isArray(messages) || messages.length <= 20) return {}; const early = messages.slice(0, 5); const recent = messages.slice(-10); // Basic naive summary token to inform the model; real summarization can be added later const summary = 'Previous context summarized for brevity.'; return { messages: [ ...early, { role: 'system', content: `Previous context: ${summary}` }, ...recent, ], }; } async executeWithTemplate(options) { const { projectDir, agentName, stepLimit, tokenBudget = 200000, tools = {}, templatePath } = options; try { const template = await this.readAgentTemplate(projectDir, templatePath); const result = await generateText({ model: openai('gpt-5-nano'), tools: tools, stopWhen: stepCountIs(stepLimit), system: template.system, prompt: template.prompt, prepareStep: async ({ messages }) => { return this.prepareStepCompression(messages); }, onStepFinish: async ({ usage, toolCalls }) => { await this.logAgentCost(projectDir, agentName, usage, toolCalls?.length ?? 0); if ((usage?.totalTokens ?? 0) > tokenBudget) { throw new Error(`Agent ${agentName} exceeded token budget: ${usage?.totalTokens}`); } }, }); return { success: true, text: result.text, toolCalls: result.steps?.flatMap((s) => s.toolCalls) ?? [], tokensUsed: result.usage?.totalTokens, }; } catch (error) { return { success: false, error: error instanceof Error ? error.message : String(error), }; } } } exports.FlashbackAgent = FlashbackAgent; //# sourceMappingURL=flashback-agent.js.map