UNPKG

federer

Version:

Experiments in asynchronous federated learning and decentralized learning

30 lines 1.31 kB
import { PreprocessFn } from "./PreprocessPipeline"; /** * Encodes labels as one-hot vectors * * @param numberLabelClasses Number of different labels. Determines the length * of the one-hot vector returned by the returned function. * * @returns A function that takes a 1D tensor of labels, and returns this tensor * encoded as a 2D one-hot tensor. Note that the values in the 1-D tensor must * be integers in the range `[0, numberLabelClasses]`. */ export declare const oneHotLabels: (numberLabelClasses: number) => PreprocessFn; /** * Linearly map values of a tensor from an input range to an output range * * @param inputRange Range of values in the input tensor * @param outputRange Range of values in the output tensor * @returns A function that takes a tensor with values in `inputRange`, and that * returns a tensor with values mapped onto the range `outputRange` */ export declare const mapValuesToRange: (inputRange: [number, number], outputRange: [number, number]) => PreprocessFn; /** * Flatten a list of items into a list of flat items. * * @param items Tensor representing a list of items, where items may be multi- * dimensional. * @returns Tensor representing a list of flat items */ export declare const flattenItems: PreprocessFn; //# sourceMappingURL=preprocess.d.ts.map