UNPKG

face-api.js

Version:

JavaScript API for face detection and face recognition in the browser with tensorflow.js

78 lines 4.28 kB
import { __awaiter, __generator } from "tslib"; import * as tf from '@tensorflow/tfjs-core'; import { Point } from '../classes'; import { nonMaxSuppression } from '../ops'; import { extractImagePatches } from './extractImagePatches'; import { MtcnnBox } from './MtcnnBox'; import { ONet } from './ONet'; export function stage3(img, inputBoxes, scoreThreshold, params, stats) { return __awaiter(this, void 0, void 0, function () { var ts, onetInputs, onetOuts, scoresTensor, scores, _a, _b, indices, filteredRegions, filteredBoxes, filteredScores, finalBoxes, finalScores, points, indicesNms; return __generator(this, function (_c) { switch (_c.label) { case 0: ts = Date.now(); return [4 /*yield*/, extractImagePatches(img, inputBoxes, { width: 48, height: 48 })]; case 1: onetInputs = _c.sent(); stats.stage3_extractImagePatches = Date.now() - ts; ts = Date.now(); onetOuts = onetInputs.map(function (onetInput) { var out = ONet(onetInput, params); onetInput.dispose(); return out; }); stats.stage3_onet = Date.now() - ts; scoresTensor = onetOuts.length > 1 ? tf.concat(onetOuts.map(function (out) { return out.scores; })) : onetOuts[0].scores; _b = (_a = Array).from; return [4 /*yield*/, scoresTensor.data()]; case 2: scores = _b.apply(_a, [_c.sent()]); scoresTensor.dispose(); indices = scores .map(function (score, idx) { return ({ score: score, idx: idx }); }) .filter(function (c) { return c.score > scoreThreshold; }) .map(function (_a) { var idx = _a.idx; return idx; }); filteredRegions = indices.map(function (idx) { var regionsData = onetOuts[idx].regions.arraySync(); return new MtcnnBox(regionsData[0][0], regionsData[0][1], regionsData[0][2], regionsData[0][3]); }); filteredBoxes = indices .map(function (idx, i) { return inputBoxes[idx].calibrate(filteredRegions[i]); }); filteredScores = indices.map(function (idx) { return scores[idx]; }); finalBoxes = []; finalScores = []; points = []; if (filteredBoxes.length > 0) { ts = Date.now(); indicesNms = nonMaxSuppression(filteredBoxes, filteredScores, 0.7, false); stats.stage3_nms = Date.now() - ts; finalBoxes = indicesNms.map(function (idx) { return filteredBoxes[idx]; }); finalScores = indicesNms.map(function (idx) { return filteredScores[idx]; }); points = indicesNms.map(function (idx, i) { return Array(5).fill(0).map(function (_, ptIdx) { var pointsData = onetOuts[idx].points.arraySync(); return new Point(((pointsData[0][ptIdx] * (finalBoxes[i].width + 1)) + finalBoxes[i].left), ((pointsData[0][ptIdx + 5] * (finalBoxes[i].height + 1)) + finalBoxes[i].top)); }); }); } onetOuts.forEach(function (t) { t.regions.dispose(); t.scores.dispose(); t.points.dispose(); }); return [2 /*return*/, { boxes: finalBoxes, scores: finalScores, points: points }]; } }); }); } //# sourceMappingURL=stage3.js.map