UNPKG

face-api.js

Version:

JavaScript API for face detection and face recognition in the browser with tensorflow.js

153 lines 8.34 kB
import { __awaiter, __extends, __generator } from "tslib"; import * as tf from '@tensorflow/tfjs-core'; import { Point, Rect } from '../classes'; import { FaceDetection } from '../classes/FaceDetection'; import { FaceLandmarks5 } from '../classes/FaceLandmarks5'; import { toNetInput } from '../dom'; import { extendWithFaceDetection, extendWithFaceLandmarks } from '../factories'; import { NeuralNetwork } from '../NeuralNetwork'; import { bgrToRgbTensor } from './bgrToRgbTensor'; import { CELL_SIZE } from './config'; import { extractParams } from './extractParams'; import { extractParamsFromWeigthMap } from './extractParamsFromWeigthMap'; import { getSizesForScale } from './getSizesForScale'; import { MtcnnOptions } from './MtcnnOptions'; import { pyramidDown } from './pyramidDown'; import { stage1 } from './stage1'; import { stage2 } from './stage2'; import { stage3 } from './stage3'; var Mtcnn = /** @class */ (function (_super) { __extends(Mtcnn, _super); function Mtcnn() { return _super.call(this, 'Mtcnn') || this; } Mtcnn.prototype.load = function (weightsOrUrl) { return __awaiter(this, void 0, void 0, function () { return __generator(this, function (_a) { console.warn('mtcnn is deprecated and will be removed soon'); return [2 /*return*/, _super.prototype.load.call(this, weightsOrUrl)]; }); }); }; Mtcnn.prototype.loadFromDisk = function (filePath) { return __awaiter(this, void 0, void 0, function () { return __generator(this, function (_a) { console.warn('mtcnn is deprecated and will be removed soon'); return [2 /*return*/, _super.prototype.loadFromDisk.call(this, filePath)]; }); }); }; Mtcnn.prototype.forwardInput = function (input, forwardParams) { if (forwardParams === void 0) { forwardParams = {}; } return __awaiter(this, void 0, void 0, function () { var params, inputCanvas, stats, tsTotal, imgTensor, onReturn, _a, height, width, _b, minFaceSize, scaleFactor, maxNumScales, scoreThresholds, scaleSteps, scales, ts, out1, out2, out3, results; return __generator(this, function (_c) { switch (_c.label) { case 0: params = this.params; if (!params) { throw new Error('Mtcnn - load model before inference'); } inputCanvas = input.canvases[0]; if (!inputCanvas) { throw new Error('Mtcnn - inputCanvas is not defined, note that passing tensors into Mtcnn.forwardInput is not supported yet.'); } stats = {}; tsTotal = Date.now(); imgTensor = tf.tidy(function () { return bgrToRgbTensor(tf.expandDims(tf.browser.fromPixels(inputCanvas)).toFloat()); }); onReturn = function (results) { // dispose tensors on return imgTensor.dispose(); stats.total = Date.now() - tsTotal; return results; }; _a = imgTensor.shape.slice(1), height = _a[0], width = _a[1]; _b = new MtcnnOptions(forwardParams), minFaceSize = _b.minFaceSize, scaleFactor = _b.scaleFactor, maxNumScales = _b.maxNumScales, scoreThresholds = _b.scoreThresholds, scaleSteps = _b.scaleSteps; scales = (scaleSteps || pyramidDown(minFaceSize, scaleFactor, [height, width])) .filter(function (scale) { var sizes = getSizesForScale(scale, [height, width]); return Math.min(sizes.width, sizes.height) > CELL_SIZE; }) .slice(0, maxNumScales); stats.scales = scales; stats.pyramid = scales.map(function (scale) { return getSizesForScale(scale, [height, width]); }); ts = Date.now(); return [4 /*yield*/, stage1(imgTensor, scales, scoreThresholds[0], params.pnet, stats)]; case 1: out1 = _c.sent(); stats.total_stage1 = Date.now() - ts; if (!out1.boxes.length) { return [2 /*return*/, onReturn({ results: [], stats: stats })]; } stats.stage2_numInputBoxes = out1.boxes.length; // using the inputCanvas to extract and resize the image patches, since it is faster // than doing this on the gpu ts = Date.now(); return [4 /*yield*/, stage2(inputCanvas, out1.boxes, scoreThresholds[1], params.rnet, stats)]; case 2: out2 = _c.sent(); stats.total_stage2 = Date.now() - ts; if (!out2.boxes.length) { return [2 /*return*/, onReturn({ results: [], stats: stats })]; } stats.stage3_numInputBoxes = out2.boxes.length; ts = Date.now(); return [4 /*yield*/, stage3(inputCanvas, out2.boxes, scoreThresholds[2], params.onet, stats)]; case 3: out3 = _c.sent(); stats.total_stage3 = Date.now() - ts; results = out3.boxes.map(function (box, idx) { return extendWithFaceLandmarks(extendWithFaceDetection({}, new FaceDetection(out3.scores[idx], new Rect(box.left / width, box.top / height, box.width / width, box.height / height), { height: height, width: width })), new FaceLandmarks5(out3.points[idx].map(function (pt) { return pt.sub(new Point(box.left, box.top)).div(new Point(box.width, box.height)); }), { width: box.width, height: box.height })); }); return [2 /*return*/, onReturn({ results: results, stats: stats })]; } }); }); }; Mtcnn.prototype.forward = function (input, forwardParams) { if (forwardParams === void 0) { forwardParams = {}; } return __awaiter(this, void 0, void 0, function () { var _a; return __generator(this, function (_b) { switch (_b.label) { case 0: _a = this.forwardInput; return [4 /*yield*/, toNetInput(input)]; case 1: return [4 /*yield*/, _a.apply(this, [_b.sent(), forwardParams])]; case 2: return [2 /*return*/, (_b.sent()).results]; } }); }); }; Mtcnn.prototype.forwardWithStats = function (input, forwardParams) { if (forwardParams === void 0) { forwardParams = {}; } return __awaiter(this, void 0, void 0, function () { var _a; return __generator(this, function (_b) { switch (_b.label) { case 0: _a = this.forwardInput; return [4 /*yield*/, toNetInput(input)]; case 1: return [2 /*return*/, _a.apply(this, [_b.sent(), forwardParams])]; } }); }); }; Mtcnn.prototype.getDefaultModelName = function () { return 'mtcnn_model'; }; Mtcnn.prototype.extractParamsFromWeigthMap = function (weightMap) { return extractParamsFromWeigthMap(weightMap); }; Mtcnn.prototype.extractParams = function (weights) { return extractParams(weights); }; return Mtcnn; }(NeuralNetwork)); export { Mtcnn }; //# sourceMappingURL=Mtcnn.js.map