UNPKG

face-api.js

Version:

JavaScript API for face detection and face recognition in the browser with tensorflow.js

130 lines 6.33 kB
import { AgeGenderNet } from '../ageGenderNet/AgeGenderNet'; import { FaceExpressionNet } from '../faceExpressionNet/FaceExpressionNet'; import { FaceLandmark68Net } from '../faceLandmarkNet/FaceLandmark68Net'; import { FaceLandmark68TinyNet } from '../faceLandmarkNet/FaceLandmark68TinyNet'; import { FaceRecognitionNet } from '../faceRecognitionNet/FaceRecognitionNet'; import { Mtcnn } from '../mtcnn/Mtcnn'; import { SsdMobilenetv1 } from '../ssdMobilenetv1/SsdMobilenetv1'; import { TinyFaceDetector } from '../tinyFaceDetector/TinyFaceDetector'; import { TinyYolov2 } from '../tinyYolov2'; export var nets = { ssdMobilenetv1: new SsdMobilenetv1(), tinyFaceDetector: new TinyFaceDetector(), tinyYolov2: new TinyYolov2(), mtcnn: new Mtcnn(), faceLandmark68Net: new FaceLandmark68Net(), faceLandmark68TinyNet: new FaceLandmark68TinyNet(), faceRecognitionNet: new FaceRecognitionNet(), faceExpressionNet: new FaceExpressionNet(), ageGenderNet: new AgeGenderNet() }; /** * Attempts to detect all faces in an image using SSD Mobilenetv1 Network. * * @param input The input image. * @param options (optional, default: see SsdMobilenetv1Options constructor for default parameters). * @returns Bounding box of each face with score. */ export var ssdMobilenetv1 = function (input, options) { return nets.ssdMobilenetv1.locateFaces(input, options); }; /** * Attempts to detect all faces in an image using the Tiny Face Detector. * * @param input The input image. * @param options (optional, default: see TinyFaceDetectorOptions constructor for default parameters). * @returns Bounding box of each face with score. */ export var tinyFaceDetector = function (input, options) { return nets.tinyFaceDetector.locateFaces(input, options); }; /** * Attempts to detect all faces in an image using the Tiny Yolov2 Network. * * @param input The input image. * @param options (optional, default: see TinyYolov2Options constructor for default parameters). * @returns Bounding box of each face with score. */ export var tinyYolov2 = function (input, options) { return nets.tinyYolov2.locateFaces(input, options); }; /** * Attempts to detect all faces in an image and the 5 point face landmarks * of each detected face using the MTCNN Network. * * @param input The input image. * @param options (optional, default: see MtcnnOptions constructor for default parameters). * @returns Bounding box of each face with score and 5 point face landmarks. */ export var mtcnn = function (input, options) { return nets.mtcnn.forward(input, options); }; /** * Detects the 68 point face landmark positions of the face shown in an image. * * @param inputs The face image extracted from the bounding box of a face. Can * also be an array of input images, which will be batch processed. * @returns 68 point face landmarks or array thereof in case of batch input. */ export var detectFaceLandmarks = function (input) { return nets.faceLandmark68Net.detectLandmarks(input); }; /** * Detects the 68 point face landmark positions of the face shown in an image * using a tinier version of the 68 point face landmark model, which is slightly * faster at inference, but also slightly less accurate. * * @param inputs The face image extracted from the bounding box of a face. Can * also be an array of input images, which will be batch processed. * @returns 68 point face landmarks or array thereof in case of batch input. */ export var detectFaceLandmarksTiny = function (input) { return nets.faceLandmark68TinyNet.detectLandmarks(input); }; /** * Computes a 128 entry vector (face descriptor / face embeddings) from the face shown in an image, * which uniquely represents the features of that persons face. The computed face descriptor can * be used to measure the similarity between faces, by computing the euclidean distance of two * face descriptors. * * @param inputs The face image extracted from the aligned bounding box of a face. Can * also be an array of input images, which will be batch processed. * @returns Face descriptor with 128 entries or array thereof in case of batch input. */ export var computeFaceDescriptor = function (input) { return nets.faceRecognitionNet.computeFaceDescriptor(input); }; /** * Recognizes the facial expressions from a face image. * * @param inputs The face image extracted from the bounding box of a face. Can * also be an array of input images, which will be batch processed. * @returns Facial expressions with corresponding probabilities or array thereof in case of batch input. */ export var recognizeFaceExpressions = function (input) { return nets.faceExpressionNet.predictExpressions(input); }; /** * Predicts age and gender from a face image. * * @param inputs The face image extracted from the bounding box of a face. Can * also be an array of input images, which will be batch processed. * @returns Predictions with age, gender and gender probability or array thereof in case of batch input. */ export var predictAgeAndGender = function (input) { return nets.ageGenderNet.predictAgeAndGender(input); }; export var loadSsdMobilenetv1Model = function (url) { return nets.ssdMobilenetv1.load(url); }; export var loadTinyFaceDetectorModel = function (url) { return nets.tinyFaceDetector.load(url); }; export var loadMtcnnModel = function (url) { return nets.mtcnn.load(url); }; export var loadTinyYolov2Model = function (url) { return nets.tinyYolov2.load(url); }; export var loadFaceLandmarkModel = function (url) { return nets.faceLandmark68Net.load(url); }; export var loadFaceLandmarkTinyModel = function (url) { return nets.faceLandmark68TinyNet.load(url); }; export var loadFaceRecognitionModel = function (url) { return nets.faceRecognitionNet.load(url); }; export var loadFaceExpressionModel = function (url) { return nets.faceExpressionNet.load(url); }; export var loadAgeGenderModel = function (url) { return nets.ageGenderNet.load(url); }; // backward compatibility export var loadFaceDetectionModel = loadSsdMobilenetv1Model; export var locateFaces = ssdMobilenetv1; export var detectLandmarks = detectFaceLandmarks; //# sourceMappingURL=nets.js.map