UNPKG

face-api.js

Version:

JavaScript API for face detection and face recognition in the browser with tensorflow.js

91 lines 4.38 kB
import { __awaiter, __extends, __generator } from "tslib"; import * as tf from '@tensorflow/tfjs-core'; import { toNetInput } from '../dom'; import { NeuralNetwork } from '../NeuralNetwork'; import { normalize } from '../ops'; import { convDown } from './convLayer'; import { extractParams } from './extractParams'; import { extractParamsFromWeigthMap } from './extractParamsFromWeigthMap'; import { residual, residualDown } from './residualLayer'; var FaceRecognitionNet = /** @class */ (function (_super) { __extends(FaceRecognitionNet, _super); function FaceRecognitionNet() { return _super.call(this, 'FaceRecognitionNet') || this; } FaceRecognitionNet.prototype.forwardInput = function (input) { var params = this.params; if (!params) { throw new Error('FaceRecognitionNet - load model before inference'); } return tf.tidy(function () { var batchTensor = input.toBatchTensor(150, true).toFloat(); var meanRgb = [122.782, 117.001, 104.298]; var normalized = normalize(batchTensor, meanRgb).div(tf.scalar(256)); var out = convDown(normalized, params.conv32_down); out = tf.maxPool(out, 3, 2, 'valid'); out = residual(out, params.conv32_1); out = residual(out, params.conv32_2); out = residual(out, params.conv32_3); out = residualDown(out, params.conv64_down); out = residual(out, params.conv64_1); out = residual(out, params.conv64_2); out = residual(out, params.conv64_3); out = residualDown(out, params.conv128_down); out = residual(out, params.conv128_1); out = residual(out, params.conv128_2); out = residualDown(out, params.conv256_down); out = residual(out, params.conv256_1); out = residual(out, params.conv256_2); out = residualDown(out, params.conv256_down_out); var globalAvg = out.mean([1, 2]); var fullyConnected = tf.matMul(globalAvg, params.fc); return fullyConnected; }); }; FaceRecognitionNet.prototype.forward = function (input) { return __awaiter(this, void 0, void 0, function () { var _a; return __generator(this, function (_b) { switch (_b.label) { case 0: _a = this.forwardInput; return [4 /*yield*/, toNetInput(input)]; case 1: return [2 /*return*/, _a.apply(this, [_b.sent()])]; } }); }); }; FaceRecognitionNet.prototype.computeFaceDescriptor = function (input) { return __awaiter(this, void 0, void 0, function () { var netInput, faceDescriptorTensors, faceDescriptorsForBatch; var _this = this; return __generator(this, function (_a) { switch (_a.label) { case 0: return [4 /*yield*/, toNetInput(input)]; case 1: netInput = _a.sent(); faceDescriptorTensors = tf.tidy(function () { return tf.unstack(_this.forwardInput(netInput)); }); return [4 /*yield*/, Promise.all(faceDescriptorTensors.map(function (t) { return t.data(); }))]; case 2: faceDescriptorsForBatch = _a.sent(); faceDescriptorTensors.forEach(function (t) { return t.dispose(); }); return [2 /*return*/, netInput.isBatchInput ? faceDescriptorsForBatch : faceDescriptorsForBatch[0]]; } }); }); }; FaceRecognitionNet.prototype.getDefaultModelName = function () { return 'face_recognition_model'; }; FaceRecognitionNet.prototype.extractParamsFromWeigthMap = function (weightMap) { return extractParamsFromWeigthMap(weightMap); }; FaceRecognitionNet.prototype.extractParams = function (weights) { return extractParams(weights); }; return FaceRecognitionNet; }(NeuralNetwork)); export { FaceRecognitionNet }; //# sourceMappingURL=FaceRecognitionNet.js.map