UNPKG

face-api.js

Version:

JavaScript API for face detection and face recognition in the browser with tensorflow.js

70 lines 3.72 kB
"use strict"; Object.defineProperty(exports, "__esModule", { value: true }); var tslib_1 = require("tslib"); var tf = require("@tensorflow/tfjs-core"); var ops_1 = require("../ops"); var extractImagePatches_1 = require("./extractImagePatches"); var MtcnnBox_1 = require("./MtcnnBox"); var RNet_1 = require("./RNet"); function stage2(img, inputBoxes, scoreThreshold, params, stats) { return tslib_1.__awaiter(this, void 0, void 0, function () { var ts, rnetInputs, rnetOuts, scoresTensor, scores, _a, _b, indices, filteredBoxes, filteredScores, finalBoxes, finalScores, indicesNms, regions_1; return tslib_1.__generator(this, function (_c) { switch (_c.label) { case 0: ts = Date.now(); return [4 /*yield*/, extractImagePatches_1.extractImagePatches(img, inputBoxes, { width: 24, height: 24 })]; case 1: rnetInputs = _c.sent(); stats.stage2_extractImagePatches = Date.now() - ts; ts = Date.now(); rnetOuts = rnetInputs.map(function (rnetInput) { var out = RNet_1.RNet(rnetInput, params); rnetInput.dispose(); return out; }); stats.stage2_rnet = Date.now() - ts; scoresTensor = rnetOuts.length > 1 ? tf.concat(rnetOuts.map(function (out) { return out.scores; })) : rnetOuts[0].scores; _b = (_a = Array).from; return [4 /*yield*/, scoresTensor.data()]; case 2: scores = _b.apply(_a, [_c.sent()]); scoresTensor.dispose(); indices = scores .map(function (score, idx) { return ({ score: score, idx: idx }); }) .filter(function (c) { return c.score > scoreThreshold; }) .map(function (_a) { var idx = _a.idx; return idx; }); filteredBoxes = indices.map(function (idx) { return inputBoxes[idx]; }); filteredScores = indices.map(function (idx) { return scores[idx]; }); finalBoxes = []; finalScores = []; if (filteredBoxes.length > 0) { ts = Date.now(); indicesNms = ops_1.nonMaxSuppression(filteredBoxes, filteredScores, 0.7); stats.stage2_nms = Date.now() - ts; regions_1 = indicesNms.map(function (idx) { var regionsData = rnetOuts[indices[idx]].regions.arraySync(); return new MtcnnBox_1.MtcnnBox(regionsData[0][0], regionsData[0][1], regionsData[0][2], regionsData[0][3]); }); finalScores = indicesNms.map(function (idx) { return filteredScores[idx]; }); finalBoxes = indicesNms.map(function (idx, i) { return filteredBoxes[idx].calibrate(regions_1[i]); }); } rnetOuts.forEach(function (t) { t.regions.dispose(); t.scores.dispose(); }); return [2 /*return*/, { boxes: finalBoxes, scores: finalScores }]; } }); }); } exports.stage2 = stage2; //# sourceMappingURL=stage2.js.map