UNPKG

face-api.js

Version:

JavaScript API for face detection and face recognition in the browser with tensorflow.js

148 lines 6.57 kB
"use strict"; Object.defineProperty(exports, "__esModule", { value: true }); var tf = require("@tensorflow/tfjs-core"); var env_1 = require("../env"); var padToSquare_1 = require("../ops/padToSquare"); var utils_1 = require("../utils"); var createCanvas_1 = require("./createCanvas"); var imageToSquare_1 = require("./imageToSquare"); var NetInput = /** @class */ (function () { function NetInput(inputs, treatAsBatchInput) { var _this = this; if (treatAsBatchInput === void 0) { treatAsBatchInput = false; } this._imageTensors = []; this._canvases = []; this._treatAsBatchInput = false; this._inputDimensions = []; if (!Array.isArray(inputs)) { throw new Error("NetInput.constructor - expected inputs to be an Array of TResolvedNetInput or to be instanceof tf.Tensor4D, instead have " + inputs); } this._treatAsBatchInput = treatAsBatchInput; this._batchSize = inputs.length; inputs.forEach(function (input, idx) { if (utils_1.isTensor3D(input)) { _this._imageTensors[idx] = input; _this._inputDimensions[idx] = input.shape; return; } if (utils_1.isTensor4D(input)) { var batchSize = input.shape[0]; if (batchSize !== 1) { throw new Error("NetInput - tf.Tensor4D with batchSize " + batchSize + " passed, but not supported in input array"); } _this._imageTensors[idx] = input; _this._inputDimensions[idx] = input.shape.slice(1); return; } var canvas = input instanceof env_1.env.getEnv().Canvas ? input : createCanvas_1.createCanvasFromMedia(input); _this._canvases[idx] = canvas; _this._inputDimensions[idx] = [canvas.height, canvas.width, 3]; }); } Object.defineProperty(NetInput.prototype, "imageTensors", { get: function () { return this._imageTensors; }, enumerable: true, configurable: true }); Object.defineProperty(NetInput.prototype, "canvases", { get: function () { return this._canvases; }, enumerable: true, configurable: true }); Object.defineProperty(NetInput.prototype, "isBatchInput", { get: function () { return this.batchSize > 1 || this._treatAsBatchInput; }, enumerable: true, configurable: true }); Object.defineProperty(NetInput.prototype, "batchSize", { get: function () { return this._batchSize; }, enumerable: true, configurable: true }); Object.defineProperty(NetInput.prototype, "inputDimensions", { get: function () { return this._inputDimensions; }, enumerable: true, configurable: true }); Object.defineProperty(NetInput.prototype, "inputSize", { get: function () { return this._inputSize; }, enumerable: true, configurable: true }); Object.defineProperty(NetInput.prototype, "reshapedInputDimensions", { get: function () { var _this = this; return utils_1.range(this.batchSize, 0, 1).map(function (_, batchIdx) { return _this.getReshapedInputDimensions(batchIdx); }); }, enumerable: true, configurable: true }); NetInput.prototype.getInput = function (batchIdx) { return this.canvases[batchIdx] || this.imageTensors[batchIdx]; }; NetInput.prototype.getInputDimensions = function (batchIdx) { return this._inputDimensions[batchIdx]; }; NetInput.prototype.getInputHeight = function (batchIdx) { return this._inputDimensions[batchIdx][0]; }; NetInput.prototype.getInputWidth = function (batchIdx) { return this._inputDimensions[batchIdx][1]; }; NetInput.prototype.getReshapedInputDimensions = function (batchIdx) { if (typeof this.inputSize !== 'number') { throw new Error('getReshapedInputDimensions - inputSize not set, toBatchTensor has not been called yet'); } var width = this.getInputWidth(batchIdx); var height = this.getInputHeight(batchIdx); return utils_1.computeReshapedDimensions({ width: width, height: height }, this.inputSize); }; /** * Create a batch tensor from all input canvases and tensors * with size [batchSize, inputSize, inputSize, 3]. * * @param inputSize Height and width of the tensor. * @param isCenterImage (optional, default: false) If true, add an equal amount of padding on * both sides of the minor dimension oof the image. * @returns The batch tensor. */ NetInput.prototype.toBatchTensor = function (inputSize, isCenterInputs) { var _this = this; if (isCenterInputs === void 0) { isCenterInputs = true; } this._inputSize = inputSize; return tf.tidy(function () { var inputTensors = utils_1.range(_this.batchSize, 0, 1).map(function (batchIdx) { var input = _this.getInput(batchIdx); if (input instanceof tf.Tensor) { var imgTensor = utils_1.isTensor4D(input) ? input : input.expandDims(); imgTensor = padToSquare_1.padToSquare(imgTensor, isCenterInputs); if (imgTensor.shape[1] !== inputSize || imgTensor.shape[2] !== inputSize) { imgTensor = tf.image.resizeBilinear(imgTensor, [inputSize, inputSize]); } return imgTensor.as3D(inputSize, inputSize, 3); } if (input instanceof env_1.env.getEnv().Canvas) { return tf.browser.fromPixels(imageToSquare_1.imageToSquare(input, inputSize, isCenterInputs)); } throw new Error("toBatchTensor - at batchIdx " + batchIdx + ", expected input to be instanceof tf.Tensor or instanceof HTMLCanvasElement, instead have " + input); }); var batchTensor = tf.stack(inputTensors.map(function (t) { return t.toFloat(); })).as4D(_this.batchSize, inputSize, inputSize, 3); return batchTensor; }); }; return NetInput; }()); exports.NetInput = NetInput; //# sourceMappingURL=NetInput.js.map