fabric
Version:
Object model for HTML5 canvas, and SVG-to-canvas parser. Backed by jsdom and node-canvas.
95 lines (82 loc) • 2.92 kB
JavaScript
import { Point } from '../../Point.mjs';
const unitVectorX = new Point(1, 0);
const zero = new Point();
/**
* Rotates `vector` with `radians`
* @param {Point} vector The vector to rotate (x and y)
* @param {Number} radians The radians of the angle for the rotation
* @return {Point} The new rotated point
*/
const rotateVector = (vector, radians) => vector.rotate(radians);
/**
* Creates a vector from points represented as a point
*
* @param {Point} from
* @param {Point} to
* @returns {Point} vector
*/
const createVector = (from, to) => new Point(to).subtract(from);
/**
* return the magnitude of a vector
* @return {number}
*/
const magnitude = point => point.distanceFrom(zero);
/**
* Calculates the angle between 2 vectors
* @param {Point} a
* @param {Point} b
* @returns the angle in radians from `a` to `b`
*/
const calcAngleBetweenVectors = (a, b) => Math.atan2(crossProduct(a, b), dotProduct(a, b));
/**
* Calculates the angle between the x axis and the vector
* @param {Point} v
* @returns the angle in radians of `v`
*/
const calcVectorRotation = v => calcAngleBetweenVectors(unitVectorX, v);
/**
* @param {Point} v
* @returns {Point} vector representing the unit vector pointing to the direction of `v`
*/
const getUnitVector = v => v.eq(zero) ? v : v.scalarDivide(magnitude(v));
/**
* @param {Point} v
* @param {Boolean} [counterClockwise] the direction of the orthogonal vector, defaults to `true`
* @returns {Point} the unit orthogonal vector
*/
const getOrthonormalVector = function (v) {
let counterClockwise = arguments.length > 1 && arguments[1] !== undefined ? arguments[1] : true;
return getUnitVector(new Point(-v.y, v.x).scalarMultiply(counterClockwise ? 1 : -1));
};
/**
* Cross product of two vectors in 2D
* @param {Point} a
* @param {Point} b
* @returns {number} the magnitude of Z vector
*/
const crossProduct = (a, b) => a.x * b.y - a.y * b.x;
/**
* Dot product of two vectors in 2D
* @param {Point} a
* @param {Point} b
* @returns {number}
*/
const dotProduct = (a, b) => a.x * b.x + a.y * b.y;
/**
* Checks if the vector is between two others. It is considered
* to be inside when the vector to be tested is between the
* initial vector and the final vector (included) in a counterclockwise direction.
* @param {Point} t vector to be tested
* @param {Point} a initial vector
* @param {Point} b final vector
* @returns {boolean} true if the vector is among the others
*/
const isBetweenVectors = (t, a, b) => {
if (t.eq(a) || t.eq(b)) return true;
const AxB = crossProduct(a, b),
AxT = crossProduct(a, t),
BxT = crossProduct(b, t);
return AxB >= 0 ? AxT >= 0 && BxT <= 0 : !(AxT <= 0 && BxT >= 0);
};
export { calcAngleBetweenVectors, calcVectorRotation, createVector, crossProduct, dotProduct, getOrthonormalVector, getUnitVector, isBetweenVectors, magnitude, rotateVector };
//# sourceMappingURL=vectors.mjs.map