UNPKG

ethers

Version:

A complete and compact Ethereum library, for dapps, wallets and any other tools.

659 lines (546 loc) 23 kB
//import { TypedDataDomain, TypedDataField } from "@ethersproject/providerabstract-signer"; import { getAddress } from "../address/index.js"; import { keccak256 } from "../crypto/index.js"; import { recoverAddress } from "../transaction/index.js"; import { concat, defineProperties, getBigInt, getBytes, hexlify, isHexString, mask, toBeHex, toQuantity, toTwos, zeroPadValue, assertArgument } from "../utils/index.js"; import { id } from "./id.js"; import type { SignatureLike } from "../crypto/index.js"; import type { BigNumberish, BytesLike } from "../utils/index.js"; const padding = new Uint8Array(32); padding.fill(0); const BN__1 = BigInt(-1); const BN_0 = BigInt(0); const BN_1 = BigInt(1); const BN_MAX_UINT256 = BigInt("0xffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffff"); // @TODO: in v7, verifyingContract should be an AddressLike and use resolveAddress /** * The domain for an [[link-eip-712]] payload. */ export interface TypedDataDomain { /** * The human-readable name of the signing domain. */ name?: null | string; /** * The major version of the signing domain. */ version?: null | string; /** * The chain ID of the signing domain. */ chainId?: null | BigNumberish; /** * The the address of the contract that will verify the signature. */ verifyingContract?: null | string; /** * A salt used for purposes decided by the specific domain. */ salt?: null | BytesLike; }; /** * A specific field of a structured [[link-eip-712]] type. */ export interface TypedDataField { /** * The field name. */ name: string; /** * The type of the field. */ type: string; }; function hexPadRight(value: BytesLike): string { const bytes = getBytes(value); const padOffset = bytes.length % 32 if (padOffset) { return concat([ bytes, padding.slice(padOffset) ]); } return hexlify(bytes); } const hexTrue = toBeHex(BN_1, 32); const hexFalse = toBeHex(BN_0, 32); const domainFieldTypes: Record<string, string> = { name: "string", version: "string", chainId: "uint256", verifyingContract: "address", salt: "bytes32" }; const domainFieldNames: Array<string> = [ "name", "version", "chainId", "verifyingContract", "salt" ]; function checkString(key: string): (value: any) => string { return function (value: any){ assertArgument(typeof(value) === "string", `invalid domain value for ${ JSON.stringify(key) }`, `domain.${ key }`, value); return value; } } const domainChecks: Record<string, (value: any) => any> = { name: checkString("name"), version: checkString("version"), chainId: function(_value: any) { const value = getBigInt(_value, "domain.chainId"); assertArgument(value >= 0, "invalid chain ID", "domain.chainId", _value); if (Number.isSafeInteger(value)) { return Number(value); } return toQuantity(value); }, verifyingContract: function(value: any) { try { return getAddress(value).toLowerCase(); } catch (error) { } assertArgument(false, `invalid domain value "verifyingContract"`, "domain.verifyingContract", value); }, salt: function(value: any) { const bytes = getBytes(value, "domain.salt"); assertArgument(bytes.length === 32, `invalid domain value "salt"`, "domain.salt", value); return hexlify(bytes); } } function getBaseEncoder(type: string): null | ((value: any) => string) { // intXX and uintXX { const match = type.match(/^(u?)int(\d+)$/); if (match) { const signed = (match[1] === ""); const width = parseInt(match[2]); assertArgument(width % 8 === 0 && width !== 0 && width <= 256 && match[2] === String(width), "invalid numeric width", "type", type); const boundsUpper = mask(BN_MAX_UINT256, signed ? (width - 1): width); const boundsLower = signed ? ((boundsUpper + BN_1) * BN__1): BN_0; return function(_value: BigNumberish) { const value = getBigInt(_value, "value"); assertArgument(value >= boundsLower && value <= boundsUpper, `value out-of-bounds for ${ type }`, "value", value); return toBeHex(signed ? toTwos(value, 256): value, 32); }; } } // bytesXX { const match = type.match(/^bytes(\d+)$/); if (match) { const width = parseInt(match[1]); assertArgument(width !== 0 && width <= 32 && match[1] === String(width), "invalid bytes width", "type", type); return function(value: BytesLike) { const bytes = getBytes(value); assertArgument(bytes.length === width, `invalid length for ${ type }`, "value", value); return hexPadRight(value); }; } } switch (type) { case "address": return function(value: string) { return zeroPadValue(getAddress(value), 32); }; case "bool": return function(value: boolean) { return ((!value) ? hexFalse: hexTrue); }; case "bytes": return function(value: BytesLike) { return keccak256(value); }; case "string": return function(value: string) { return id(value); }; } return null; } function encodeType(name: string, fields: Array<TypedDataField>): string { return `${ name }(${ fields.map(({ name, type }) => (type + " " + name)).join(",") })`; } type ArrayResult = { base: string; // The base type index?: string; // the full Index (if any) array?: { // The Array... (if index) base: string; // ...base type (same as above) prefix: string; // ...sans the final Index count: number; // ...the final Index (-1 for dynamic) } }; // foo[][3] => { base: "foo", index: "[][3]", array: { // base: "foo", prefix: "foo[]", count: 3 } } function splitArray(type: string): ArrayResult { const match = type.match(/^([^\x5b]*)((\x5b\d*\x5d)*)(\x5b(\d*)\x5d)$/); if (match) { return { base: match[1], index: (match[2] + match[4]), array: { base: match[1], prefix: (match[1] + match[2]), count: (match[5] ? parseInt(match[5]): -1), } }; } return { base: type }; } /** * A **TypedDataEncode** prepares and encodes [[link-eip-712]] payloads * for signed typed data. * * This is useful for those that wish to compute various components of a * typed data hash, primary types, or sub-components, but generally the * higher level [[Signer-signTypedData]] is more useful. */ export class TypedDataEncoder { /** * The primary type for the structured [[types]]. * * This is derived automatically from the [[types]], since no * recursion is possible, once the DAG for the types is consturcted * internally, the primary type must be the only remaining type with * no parent nodes. */ readonly primaryType!: string; readonly #types: string; /** * The types. */ get types(): Record<string, Array<TypedDataField>> { return JSON.parse(this.#types); } readonly #fullTypes: Map<string, string> readonly #encoderCache: Map<string, (value: any) => string>; /** * Create a new **TypedDataEncoder** for %%types%%. * * This performs all necessary checking that types are valid and * do not violate the [[link-eip-712]] structural constraints as * well as computes the [[primaryType]]. */ constructor(_types: Record<string, Array<TypedDataField>>) { this.#fullTypes = new Map(); this.#encoderCache = new Map(); // Link struct types to their direct child structs const links: Map<string, Set<string>> = new Map(); // Link structs to structs which contain them as a child const parents: Map<string, Array<string>> = new Map(); // Link all subtypes within a given struct const subtypes: Map<string, Set<string>> = new Map(); const types: Record<string, Array<TypedDataField>> = { }; Object.keys(_types).forEach((type) => { types[type] = _types[type].map(({ name, type }) => { // Normalize the base type (unless name conflict) let { base, index } = splitArray(type); if (base === "int" && !_types["int"]) { base = "int256"; } if (base === "uint" && !_types["uint"]) { base = "uint256"; } return { name, type: (base + (index || "")) }; }); links.set(type, new Set()); parents.set(type, [ ]); subtypes.set(type, new Set()); }); this.#types = JSON.stringify(types); for (const name in types) { const uniqueNames: Set<string> = new Set(); for (const field of types[name]) { // Check each field has a unique name assertArgument(!uniqueNames.has(field.name), `duplicate variable name ${ JSON.stringify(field.name) } in ${ JSON.stringify(name) }`, "types", _types); uniqueNames.add(field.name); // Get the base type (drop any array specifiers) const baseType = splitArray(field.type).base; assertArgument(baseType !== name, `circular type reference to ${ JSON.stringify(baseType) }`, "types", _types); // Is this a base encoding type? const encoder = getBaseEncoder(baseType); if (encoder) { continue; } assertArgument(parents.has(baseType), `unknown type ${ JSON.stringify(baseType) }`, "types", _types); // Add linkage (parents.get(baseType) as Array<string>).push(name); (links.get(name) as Set<string>).add(baseType); } } // Deduce the primary type const primaryTypes = Array.from(parents.keys()).filter((n) => ((parents.get(n) as Array<string>).length === 0)); assertArgument(primaryTypes.length !== 0, "missing primary type", "types", _types); assertArgument(primaryTypes.length === 1, `ambiguous primary types or unused types: ${ primaryTypes.map((t) => (JSON.stringify(t))).join(", ") }`, "types", _types); defineProperties<TypedDataEncoder>(this, { primaryType: primaryTypes[0] }); // Check for circular type references function checkCircular(type: string, found: Set<string>) { assertArgument(!found.has(type), `circular type reference to ${ JSON.stringify(type) }`, "types", _types); found.add(type); for (const child of (links.get(type) as Set<string>)) { if (!parents.has(child)) { continue; } // Recursively check children checkCircular(child, found); // Mark all ancestors as having this decendant for (const subtype of found) { (subtypes.get(subtype) as Set<string>).add(child); } } found.delete(type); } checkCircular(this.primaryType, new Set()); // Compute each fully describe type for (const [ name, set ] of subtypes) { const st = Array.from(set); st.sort(); this.#fullTypes.set(name, encodeType(name, types[name]) + st.map((t) => encodeType(t, types[t])).join("")); } } /** * Returnthe encoder for the specific %%type%%. */ getEncoder(type: string): (value: any) => string { let encoder = this.#encoderCache.get(type); if (!encoder) { encoder = this.#getEncoder(type); this.#encoderCache.set(type, encoder); } return encoder; } #getEncoder(type: string): (value: any) => string { // Basic encoder type (address, bool, uint256, etc) { const encoder = getBaseEncoder(type); if (encoder) { return encoder; } } // Array const array = splitArray(type).array; if (array) { const subtype = array.prefix; const subEncoder = this.getEncoder(subtype); return (value: Array<any>) => { assertArgument(array.count === -1 || array.count === value.length, `array length mismatch; expected length ${ array.count }`, "value", value); let result = value.map(subEncoder); if (this.#fullTypes.has(subtype)) { result = result.map(keccak256); } return keccak256(concat(result)); }; } // Struct const fields = this.types[type]; if (fields) { const encodedType = id(this.#fullTypes.get(type) as string); return (value: Record<string, any>) => { const values = fields.map(({ name, type }) => { const result = this.getEncoder(type)(value[name]); if (this.#fullTypes.has(type)) { return keccak256(result); } return result; }); values.unshift(encodedType); return concat(values); } } assertArgument(false, `unknown type: ${ type }`, "type", type); } /** * Return the full type for %%name%%. */ encodeType(name: string): string { const result = this.#fullTypes.get(name); assertArgument(result, `unknown type: ${ JSON.stringify(name) }`, "name", name); return result; } /** * Return the encoded %%value%% for the %%type%%. */ encodeData(type: string, value: any): string { return this.getEncoder(type)(value); } /** * Returns the hash of %%value%% for the type of %%name%%. */ hashStruct(name: string, value: Record<string, any>): string { return keccak256(this.encodeData(name, value)); } /** * Return the fulled encoded %%value%% for the [[types]]. */ encode(value: Record<string, any>): string { return this.encodeData(this.primaryType, value); } /** * Return the hash of the fully encoded %%value%% for the [[types]]. */ hash(value: Record<string, any>): string { return this.hashStruct(this.primaryType, value); } /** * @_ignore: */ _visit(type: string, value: any, callback: (type: string, data: any) => any): any { // Basic encoder type (address, bool, uint256, etc) { const encoder = getBaseEncoder(type); if (encoder) { return callback(type, value); } } // Array const array = splitArray(type).array; if (array) { assertArgument(array.count === -1 || array.count === value.length, `array length mismatch; expected length ${ array.count }`, "value", value); return value.map((v: any) => this._visit(array.prefix, v, callback)); } // Struct const fields = this.types[type]; if (fields) { return fields.reduce((accum, { name, type }) => { accum[name] = this._visit(type, value[name], callback); return accum; }, <Record<string, any>>{}); } assertArgument(false, `unknown type: ${ type }`, "type", type); } /** * Call %%calback%% for each value in %%value%%, passing the type and * component within %%value%%. * * This is useful for replacing addresses or other transformation that * may be desired on each component, based on its type. */ visit(value: Record<string, any>, callback: (type: string, data: any) => any): any { return this._visit(this.primaryType, value, callback); } /** * Create a new **TypedDataEncoder** for %%types%%. */ static from(types: Record<string, Array<TypedDataField>>): TypedDataEncoder { return new TypedDataEncoder(types); } /** * Return the primary type for %%types%%. */ static getPrimaryType(types: Record<string, Array<TypedDataField>>): string { return TypedDataEncoder.from(types).primaryType; } /** * Return the hashed struct for %%value%% using %%types%% and %%name%%. */ static hashStruct(name: string, types: Record<string, Array<TypedDataField>>, value: Record<string, any>): string { return TypedDataEncoder.from(types).hashStruct(name, value); } /** * Return the domain hash for %%domain%%. */ static hashDomain(domain: TypedDataDomain): string { const domainFields: Array<TypedDataField> = [ ]; for (const name in domain) { if ((<Record<string, any>>domain)[name] == null) { continue; } const type = domainFieldTypes[name]; assertArgument(type, `invalid typed-data domain key: ${ JSON.stringify(name) }`, "domain", domain); domainFields.push({ name, type }); } domainFields.sort((a, b) => { return domainFieldNames.indexOf(a.name) - domainFieldNames.indexOf(b.name); }); return TypedDataEncoder.hashStruct("EIP712Domain", { EIP712Domain: domainFields }, domain); } /** * Return the fully encoded [[link-eip-712]] %%value%% for %%types%% with %%domain%%. */ static encode(domain: TypedDataDomain, types: Record<string, Array<TypedDataField>>, value: Record<string, any>): string { return concat([ "0x1901", TypedDataEncoder.hashDomain(domain), TypedDataEncoder.from(types).hash(value) ]); } /** * Return the hash of the fully encoded [[link-eip-712]] %%value%% for %%types%% with %%domain%%. */ static hash(domain: TypedDataDomain, types: Record<string, Array<TypedDataField>>, value: Record<string, any>): string { return keccak256(TypedDataEncoder.encode(domain, types, value)); } // Replaces all address types with ENS names with their looked up address /** * Resolves to the value from resolving all addresses in %%value%% for * %%types%% and the %%domain%%. */ static async resolveNames(domain: TypedDataDomain, types: Record<string, Array<TypedDataField>>, value: Record<string, any>, resolveName: (name: string) => Promise<string>): Promise<{ domain: TypedDataDomain, value: any }> { // Make a copy to isolate it from the object passed in domain = Object.assign({ }, domain); // Allow passing null to ignore value for (const key in domain) { if ((<Record<string, any>>domain)[key] == null) { delete (<Record<string, any>>domain)[key]; } } // Look up all ENS names const ensCache: Record<string, string> = { }; // Do we need to look up the domain's verifyingContract? if (domain.verifyingContract && !isHexString(domain.verifyingContract, 20)) { ensCache[domain.verifyingContract] = "0x"; } // We are going to use the encoder to visit all the base values const encoder = TypedDataEncoder.from(types); // Get a list of all the addresses encoder.visit(value, (type: string, value: any) => { if (type === "address" && !isHexString(value, 20)) { ensCache[value] = "0x"; } return value; }); // Lookup each name for (const name in ensCache) { ensCache[name] = await resolveName(name); } // Replace the domain verifyingContract if needed if (domain.verifyingContract && ensCache[domain.verifyingContract]) { domain.verifyingContract = ensCache[domain.verifyingContract]; } // Replace all ENS names with their address value = encoder.visit(value, (type: string, value: any) => { if (type === "address" && ensCache[value]) { return ensCache[value]; } return value; }); return { domain, value }; } /** * Returns the JSON-encoded payload expected by nodes which implement * the JSON-RPC [[link-eip-712]] method. */ static getPayload(domain: TypedDataDomain, types: Record<string, Array<TypedDataField>>, value: Record<string, any>): any { // Validate the domain fields TypedDataEncoder.hashDomain(domain); // Derive the EIP712Domain Struct reference type const domainValues: Record<string, any> = { }; const domainTypes: Array<{ name: string, type:string }> = [ ]; domainFieldNames.forEach((name) => { const value = (<any>domain)[name]; if (value == null) { return; } domainValues[name] = domainChecks[name](value); domainTypes.push({ name, type: domainFieldTypes[name] }); }); const encoder = TypedDataEncoder.from(types); // Get the normalized types types = encoder.types; const typesWithDomain = Object.assign({ }, types); assertArgument(typesWithDomain.EIP712Domain == null, "types must not contain EIP712Domain type", "types.EIP712Domain", types); typesWithDomain.EIP712Domain = domainTypes; // Validate the data structures and types encoder.encode(value); return { types: typesWithDomain, domain: domainValues, primaryType: encoder.primaryType, message: encoder.visit(value, (type: string, value: any) => { // bytes if (type.match(/^bytes(\d*)/)) { return hexlify(getBytes(value)); } // uint or int if (type.match(/^u?int/)) { return getBigInt(value).toString(); } switch (type) { case "address": return value.toLowerCase(); case "bool": return !!value; case "string": assertArgument(typeof(value) === "string", "invalid string", "value", value); return value; } assertArgument(false, "unsupported type", "type", type); }) }; } } /** * Compute the address used to sign the typed data for the %%signature%%. */ export function verifyTypedData(domain: TypedDataDomain, types: Record<string, Array<TypedDataField>>, value: Record<string, any>, signature: SignatureLike): string { return recoverAddress(TypedDataEncoder.hash(domain, types, value), signature); }