UNPKG

encog

Version:

Encog is a NodeJs ES6 framework based on the Encog Machine Learning Framework by Jeff Heaton, plus some the of basic data manipulation helpers.

90 lines (74 loc) 1.85 kB
/** * Defines a freeform connection between neurons. */ class FreeformConnection { /** * Add to the connection weight. * @param delta {Number} THe value to add. */ addWeight(delta){} /** * @return {FreeformNeuron} The source neuron. */ getSource(){} /** * @return {FreeformNeuron} The target neuron. */ getTarget(){} /** * @return {Number} The weight. */ getWeight(){} /** * @return {Boolean} Is this a recurrent connection? */ isRecurrent(){} /** * Determine if this is a recurrent connecton. * @param recurrent {Boolean} True, if this is a recurrent connection. */ setRecurrent(recurrent){} /** * Set the source neuron. * @param source {FreeformNeuron} The source neuron. */ setSource(source){} /** * Set the target neuron. * @param target {FreeformNeuron} The target neuron. */ setTarget(target){} /** * Set the weight. * @param weight {Number} The weight. */ setWeight(weight){} /** * Add to the specified temp value. * @param i {Number} The index. * @param value {Number} The value to add. */ addTempTraining(i, value){} /** * Allocate the specified length of temp training. * @param l {Number} The length. */ allocateTempTraining(l){} /** * Clear the temp training. */ clearTempTraining(){} /** * Get the specified temp training. * @param index {Number} The indfex. * @return {Number} The temp training value. */ getTempTraining(index){} /** * Set a temp training value. * @param index {Number} The index. * @param value {Number} The value. */ setTempTraining(index, value){} } module.exports = FreeformConnection;