encog
Version:
Encog is a NodeJs ES6 framework based on the Encog Machine Learning Framework by Jeff Heaton, plus some the of basic data manipulation helpers.
90 lines (74 loc) • 1.85 kB
JavaScript
/**
* Defines a freeform connection between neurons.
*/
class FreeformConnection {
/**
* Add to the connection weight.
* @param delta {Number} THe value to add.
*/
addWeight(delta){}
/**
* @return {FreeformNeuron} The source neuron.
*/
getSource(){}
/**
* @return {FreeformNeuron} The target neuron.
*/
getTarget(){}
/**
* @return {Number} The weight.
*/
getWeight(){}
/**
* @return {Boolean} Is this a recurrent connection?
*/
isRecurrent(){}
/**
* Determine if this is a recurrent connecton.
* @param recurrent {Boolean} True, if this is a recurrent connection.
*/
setRecurrent(recurrent){}
/**
* Set the source neuron.
* @param source {FreeformNeuron} The source neuron.
*/
setSource(source){}
/**
* Set the target neuron.
* @param target {FreeformNeuron} The target neuron.
*/
setTarget(target){}
/**
* Set the weight.
* @param weight {Number} The weight.
*/
setWeight(weight){}
/**
* Add to the specified temp value.
* @param i {Number} The index.
* @param value {Number} The value to add.
*/
addTempTraining(i, value){}
/**
* Allocate the specified length of temp training.
* @param l {Number} The length.
*/
allocateTempTraining(l){}
/**
* Clear the temp training.
*/
clearTempTraining(){}
/**
* Get the specified temp training.
* @param index {Number} The indfex.
* @return {Number} The temp training value.
*/
getTempTraining(index){}
/**
* Set a temp training value.
* @param index {Number} The index.
* @param value {Number} The value.
*/
setTempTraining(index, value){}
}
module.exports = FreeformConnection;