embeddings-js
Version:
A NodeJS RAG framework to easily work with LLMs and custom datasets
40 lines (39 loc) • 1.53 kB
JavaScript
;
var __importDefault = (this && this.__importDefault) || function (mod) {
return (mod && mod.__esModule) ? mod : { "default": mod };
};
Object.defineProperty(exports, "__esModule", { value: true });
exports.TextLoader = void 0;
const text_splitter_1 = require("langchain/text_splitter");
const md5_1 = __importDefault(require("md5"));
const base_loader_js_1 = require("../interfaces/base-loader.cjs");
const strings_js_1 = require("../util/strings.cjs");
class TextLoader extends base_loader_js_1.BaseLoader {
constructor({ text }) {
super(`TextLoader_${(0, md5_1.default)(text)}`);
Object.defineProperty(this, "text", {
enumerable: true,
configurable: true,
writable: true,
value: void 0
});
this.text = text;
}
async *getChunks() {
const tuncatedObjectString = (0, strings_js_1.truncateCenterString)(this.text, 50);
const chunker = new text_splitter_1.RecursiveCharacterTextSplitter({ chunkSize: 300, chunkOverlap: 0 });
const chunks = await chunker.splitText((0, strings_js_1.cleanString)(this.text));
for (const chunk of chunks) {
yield {
pageContent: chunk,
contentHash: (0, md5_1.default)(chunk),
metadata: {
type: 'TextLoader',
source: tuncatedObjectString,
textId: this.uniqueId,
},
};
}
}
}
exports.TextLoader = TextLoader;