embeddings-js
Version:
A NodeJS RAG framework to easily work with LLMs and custom datasets
31 lines (30 loc) • 1.21 kB
TypeScript
import { BaseLoader } from '../interfaces/base-loader.js';
import { AddLoaderReturn, Chunk } from '../global/types.js';
import { RAGApplicationBuilder } from './rag-application-builder.js';
export declare class RAGApplication {
private readonly debug;
private readonly initLoaders;
private readonly queryTemplate;
private readonly searchResultCount;
private readonly loaders;
private readonly cache?;
private readonly vectorDb;
private readonly model;
constructor(llmBuilder: RAGApplicationBuilder);
private embedChunks;
private getChunkUniqueId;
init(): Promise<void>;
private batchLoadEmbeddings;
private batchLoadChunks;
private incrementalLoader;
addLoader(loader: BaseLoader): Promise<AddLoaderReturn>;
getEmbeddingsCount(): Promise<number>;
deleteEmbeddingsFromLoader(uniqueLoaderId: string, areYouSure?: boolean): Promise<boolean>;
deleteAllEmbeddings(areYouSure?: boolean): Promise<boolean>;
getEmbeddings(cleanQuery: string): Promise<Chunk[]>;
getContext(query: string): Promise<Chunk[]>;
query(userQuery: string, conversationId?: string): Promise<{
result: string;
sources: string[];
}>;
}