UNPKG

embeddings-js

Version:

A NodeJS RAG framework to easily work with LLMs and custom datasets

39 lines (38 loc) 1.52 kB
import { BaseDb } from '../interfaces/base-db.js'; import { BaseLoader } from '../interfaces/base-loader.js'; import { RAGApplication } from './rag-application.js'; import { BaseCache } from '../interfaces/base-cache.js'; import { BaseEmbeddings } from '../interfaces/base-embeddings.js'; import { BaseModel } from '../interfaces/base-model.js'; import { SIMPLE_MODELS } from '../global/constants.js'; export declare class RAGApplicationBuilder { private searchResultCount; private loaders; private vectorDb; private temperature; private queryTemplate; private cache?; private embeddingModel; private initLoaders; private model; constructor(); build(): Promise<RAGApplication>; addLoader(loader: BaseLoader): this; setSearchResultCount(searchResultCount: number): this; setVectorDb(vectorDb: BaseDb): this; setTemperature(temperature: number): this; setQueryTemplate(queryTemplate: string): this; setCache(cache: BaseCache): this; setEmbeddingModel(embeddingModel: BaseEmbeddings): this; setLoaderInit(shouldDo: boolean): this; setModel(model: string | SIMPLE_MODELS | BaseModel): this; getLoaders(): BaseLoader<Record<string, string | number | boolean>, Record<string, null>>[]; getSearchResultCount(): number; getVectorDb(): BaseDb; getTemperature(): number; getQueryTemplate(): string; getCache(): BaseCache; getEmbeddingModel(): BaseEmbeddings; getLoaderInit(): boolean; getModel(): BaseModel; }