embeddings-js
Version:
A NodeJS RAG framework to easily work with LLMs and custom datasets
39 lines (38 loc) • 1.52 kB
TypeScript
import { BaseDb } from '../interfaces/base-db.js';
import { BaseLoader } from '../interfaces/base-loader.js';
import { RAGApplication } from './rag-application.js';
import { BaseCache } from '../interfaces/base-cache.js';
import { BaseEmbeddings } from '../interfaces/base-embeddings.js';
import { BaseModel } from '../interfaces/base-model.js';
import { SIMPLE_MODELS } from '../global/constants.js';
export declare class RAGApplicationBuilder {
private searchResultCount;
private loaders;
private vectorDb;
private temperature;
private queryTemplate;
private cache?;
private embeddingModel;
private initLoaders;
private model;
constructor();
build(): Promise<RAGApplication>;
addLoader(loader: BaseLoader): this;
setSearchResultCount(searchResultCount: number): this;
setVectorDb(vectorDb: BaseDb): this;
setTemperature(temperature: number): this;
setQueryTemplate(queryTemplate: string): this;
setCache(cache: BaseCache): this;
setEmbeddingModel(embeddingModel: BaseEmbeddings): this;
setLoaderInit(shouldDo: boolean): this;
setModel(model: string | SIMPLE_MODELS | BaseModel): this;
getLoaders(): BaseLoader<Record<string, string | number | boolean>, Record<string, null>>[];
getSearchResultCount(): number;
getVectorDb(): BaseDb;
getTemperature(): number;
getQueryTemplate(): string;
getCache(): BaseCache;
getEmbeddingModel(): BaseEmbeddings;
getLoaderInit(): boolean;
getModel(): BaseModel;
}