UNPKG

elation-engine

Version:
1,790 lines (1,168 loc) 48.3 kB
/** * @author alteredq / http://alteredqualia.com/ */ THREE.EffectComposer = function ( renderer, renderTarget ) { this.renderer = renderer; if ( renderTarget === undefined ) { var parameters = { minFilter: THREE.LinearFilter, magFilter: THREE.LinearFilter, format: THREE.RGBAFormat, stencilBuffer: false, //type: THREE.FloatType type: THREE.UnsignedShortType, }; var size = new THREE.Vector2(); renderer.getDrawingBufferSize(size); renderTarget = new THREE.WebGLRenderTarget( size.x, size.y, parameters ); renderTarget.texture.name = 'EffectComposer.rt1'; } this.renderTarget1 = renderTarget; this.renderTarget2 = renderTarget.clone(); this.renderTarget2.texture.name = 'EffectComposer.rt2'; this.writeBuffer = this.renderTarget1; this.readBuffer = this.renderTarget2; this.passes = []; // dependencies if ( THREE.CopyShader === undefined ) { console.error( 'THREE.EffectComposer relies on THREE.CopyShader' ); } if ( THREE.ShaderPass === undefined ) { console.error( 'THREE.EffectComposer relies on THREE.ShaderPass' ); } this.copyPass = new THREE.ShaderPass( THREE.CopyShader ); }; Object.assign( THREE.EffectComposer.prototype, { swapBuffers: function () { var tmp = this.readBuffer; this.readBuffer = this.writeBuffer; this.writeBuffer = tmp; }, addPass: function ( pass ) { this.passes.push( pass ); var size = new THREE.Vector2(); this.renderer.getDrawingBufferSize(size); pass.setSize( size.x, size.y ); }, insertPass: function ( pass, index ) { this.passes.splice( index, 0, pass ); }, render: function ( delta ) { var maskActive = false; var pass, i, il = this.passes.length; for ( i = 0; i < il; i ++ ) { pass = this.passes[ i ]; if ( pass.enabled === false ) continue; pass.render( this.renderer, this.writeBuffer, this.readBuffer, delta, maskActive ); if ( pass.needsSwap ) { if ( maskActive ) { var context = this.renderer.context; context.stencilFunc( context.NOTEQUAL, 1, 0xffffffff ); this.copyPass.render( this.renderer, this.writeBuffer, this.readBuffer, delta ); context.stencilFunc( context.EQUAL, 1, 0xffffffff ); } this.swapBuffers(); } if ( THREE.MaskPass !== undefined ) { if ( pass instanceof THREE.MaskPass ) { maskActive = true; } else if ( pass instanceof THREE.ClearMaskPass ) { maskActive = false; } } } }, reset: function ( renderTarget ) { if ( renderTarget === undefined ) { var size = new THREE.Vector2(); this.renderer.getDrawingBufferSize(size); renderTarget = this.renderTarget1.clone(); renderTarget.setSize( size.x, size.y ); } this.renderTarget1.dispose(); this.renderTarget2.dispose(); this.renderTarget1 = renderTarget; this.renderTarget2 = renderTarget.clone(); this.writeBuffer = this.renderTarget1; this.readBuffer = this.renderTarget2; }, setSize: function ( width, height ) { this.renderTarget1.setSize( width, height ); this.renderTarget2.setSize( width, height ); for ( var i = 0; i < this.passes.length; i ++ ) { this.passes[ i ].setSize( width, height ); } } } ); THREE.Pass = function () { // if set to true, the pass is processed by the composer this.enabled = true; // if set to true, the pass indicates to swap read and write buffer after rendering this.needsSwap = true; // if set to true, the pass clears its buffer before rendering this.clear = false; // if set to true, the result of the pass is rendered to screen this.renderToScreen = false; }; Object.assign( THREE.Pass.prototype, { setSize: function ( width, height ) {}, render: function ( renderer, writeBuffer, readBuffer, delta, maskActive ) { console.error( 'THREE.Pass: .render() must be implemented in derived pass.' ); } } ); // Helper for passes that need to fill the viewport with a single quad. THREE.Pass.FullScreenQuad = ( function () { var camera = new THREE.OrthographicCamera( - 1, 1, 1, - 1, 0, 1 ); var geometry = new THREE.PlaneGeometry( 2, 2 ); var FullScreenQuad = function ( material ) { this._mesh = new THREE.Mesh( geometry, material ); }; Object.defineProperty( FullScreenQuad.prototype, 'material', { get: function () { return this._mesh.material; }, set: function ( value ) { this._mesh.material = value; } } ); Object.assign( FullScreenQuad.prototype, { dispose: function () { this._mesh.geometry.dispose(); }, render: function ( renderer ) { renderer.render( this._mesh, camera ); } } ); return FullScreenQuad; } )(); /** * @author alteredq / http://alteredqualia.com/ */ THREE.RenderPass = function ( scene, camera, overrideMaterial, clearColor, clearAlpha ) { THREE.Pass.call( this ); this.scene = scene; this.camera = camera; this.overrideMaterial = overrideMaterial; this.clearColor = clearColor; this.clearAlpha = ( clearAlpha !== undefined ) ? clearAlpha : 0; this.clear = true; this.clearDepth = false; this.needsSwap = false; }; THREE.RenderPass.prototype = Object.assign( Object.create( THREE.Pass.prototype ), { constructor: THREE.RenderPass, render: function ( renderer, writeBuffer, readBuffer, delta, maskActive ) { var oldAutoClear = renderer.autoClear; renderer.autoClear = false; this.scene.overrideMaterial = this.overrideMaterial; var oldClearColor, oldClearAlpha; if ( this.clearColor ) { oldClearColor = renderer.getClearColor().getHex(); oldClearAlpha = renderer.getClearAlpha(); renderer.setClearColor( this.clearColor, this.clearAlpha ); } if ( this.clearDepth ) { renderer.clearDepth(); } renderer.setRenderTarget(this.renderToScreen ? null : readBuffer); if (this.clear) renderer.clear(); renderer.render( this.scene, this.camera); if ( this.clearColor ) { renderer.setClearColor( oldClearColor, oldClearAlpha ); } this.scene.overrideMaterial = null; renderer.autoClear = oldAutoClear; } } ); /** * @author alteredq / http://alteredqualia.com/ */ THREE.ShaderPass = function ( shader, textureID ) { THREE.Pass.call( this ); this.textureID = ( textureID !== undefined ) ? textureID : "tDiffuse"; if ( shader instanceof THREE.ShaderMaterial ) { this.uniforms = shader.uniforms; this.material = shader; } else if ( shader ) { this.uniforms = THREE.UniformsUtils.clone( shader.uniforms ); this.material = new THREE.ShaderMaterial( { defines: Object.assign( {}, shader.defines ), uniforms: this.uniforms, vertexShader: shader.vertexShader, fragmentShader: shader.fragmentShader } ); } this.camera = new THREE.OrthographicCamera( - 1, 1, 1, - 1, 0, 1 ); this.scene = new THREE.Scene(); this.quad = new THREE.Mesh( new THREE.PlaneGeometry( 2, 2 ), null ); this.quad.frustumCulled = false; // Avoid getting clipped this.scene.add( this.quad ); }; THREE.ShaderPass.prototype = Object.assign( Object.create( THREE.Pass.prototype ), { constructor: THREE.ShaderPass, render: function( renderer, writeBuffer, readBuffer, delta, maskActive ) { if ( this.uniforms[ this.textureID ] ) { this.uniforms[ this.textureID ].value = readBuffer.texture; } this.quad.material = this.material; renderer.setRenderTarget(this.renderToScreen ? null : writeBuffer); if (this.clear) renderer.clear(); renderer.render( this.scene, this.camera); } } ); /** * @author alteredq / http://alteredqualia.com/ */ THREE.MaskPass = function ( scene, camera ) { THREE.Pass.call( this ); this.scene = scene; this.camera = camera; this.clear = true; this.needsSwap = false; this.inverse = false; }; THREE.MaskPass.prototype = Object.assign( Object.create( THREE.Pass.prototype ), { constructor: THREE.MaskPass, render: function ( renderer, writeBuffer, readBuffer, delta, maskActive ) { var context = renderer.context; var state = renderer.state; // don't update color or depth state.buffers.color.setMask( false ); state.buffers.depth.setMask( false ); // lock buffers state.buffers.color.setLocked( true ); state.buffers.depth.setLocked( true ); // set up stencil var writeValue, clearValue; if ( this.inverse ) { writeValue = 0; clearValue = 1; } else { writeValue = 1; clearValue = 0; } state.buffers.stencil.setTest( true ); state.buffers.stencil.setOp( context.REPLACE, context.REPLACE, context.REPLACE ); state.buffers.stencil.setFunc( context.ALWAYS, writeValue, 0xffffffff ); state.buffers.stencil.setClear( clearValue ); // draw into the stencil buffer renderer.setRenderTarget(readBuffer); if (this.clear) renderer.clear(); renderer.render( this.scene, this.camera); renderer.setRenderTarget(writeBuffer); if (this.clear) renderer.clear(); renderer.render( this.scene, this.camera ); // unlock color and depth buffer for subsequent rendering state.buffers.color.setLocked( false ); state.buffers.depth.setLocked( false ); // only render where stencil is set to 1 state.buffers.stencil.setFunc( context.EQUAL, 1, 0xffffffff ); // draw if == 1 state.buffers.stencil.setOp( context.KEEP, context.KEEP, context.KEEP ); } } ); THREE.ClearMaskPass = function () { THREE.Pass.call( this ); this.needsSwap = false; }; THREE.ClearMaskPass.prototype = Object.create( THREE.Pass.prototype ); Object.assign( THREE.ClearMaskPass.prototype, { render: function ( renderer, writeBuffer, readBuffer, delta, maskActive ) { renderer.state.buffers.stencil.setTest( false ); } } ); /** * @author alteredq / http://alteredqualia.com/ */ THREE.BloomPass = function ( strength, kernelSize, sigma, resolution ) { THREE.Pass.call( this ); strength = ( strength !== undefined ) ? strength : 1; kernelSize = ( kernelSize !== undefined ) ? kernelSize : 25; sigma = ( sigma !== undefined ) ? sigma : 4.0; resolution = ( resolution !== undefined ) ? resolution : 256; // render targets var pars = { minFilter: THREE.LinearFilter, magFilter: THREE.LinearFilter, format: THREE.RGBAFormat }; this.renderTargetX = new THREE.WebGLRenderTarget( resolution, resolution, pars ); this.renderTargetX.texture.name = "BloomPass.x"; this.renderTargetY = new THREE.WebGLRenderTarget( resolution, resolution, pars ); this.renderTargetY.texture.name = "BloomPass.y"; // copy material if ( THREE.CopyShader === undefined ) console.error( "THREE.BloomPass relies on THREE.CopyShader" ); var copyShader = THREE.CopyShader; this.copyUniforms = THREE.UniformsUtils.clone( copyShader.uniforms ); this.copyUniforms[ "opacity" ].value = strength; this.materialCopy = new THREE.ShaderMaterial( { uniforms: this.copyUniforms, vertexShader: copyShader.vertexShader, fragmentShader: copyShader.fragmentShader, blending: THREE.AdditiveBlending, transparent: true } ); // convolution material if ( THREE.ConvolutionShader === undefined ) console.error( "THREE.BloomPass relies on THREE.ConvolutionShader" ); var convolutionShader = THREE.ConvolutionShader; this.convolutionUniforms = THREE.UniformsUtils.clone( convolutionShader.uniforms ); this.convolutionUniforms[ "uImageIncrement" ].value = THREE.BloomPass.blurX; this.convolutionUniforms[ "cKernel" ].value = THREE.ConvolutionShader.buildKernel( sigma ); this.materialConvolution = new THREE.ShaderMaterial( { uniforms: this.convolutionUniforms, vertexShader: convolutionShader.vertexShader, fragmentShader: convolutionShader.fragmentShader, defines: { "KERNEL_SIZE_FLOAT": kernelSize.toFixed( 1 ), "KERNEL_SIZE_INT": kernelSize.toFixed( 0 ) } } ); this.needsSwap = false; this.camera = new THREE.OrthographicCamera( - 1, 1, 1, - 1, 0, 1 ); this.scene = new THREE.Scene(); this.quad = new THREE.Mesh( new THREE.PlaneGeometry( 2, 2 ), null ); this.quad.frustumCulled = false; // Avoid getting clipped this.scene.add( this.quad ); }; THREE.BloomPass.prototype = Object.assign( Object.create( THREE.Pass.prototype ), { constructor: THREE.BloomPass, render: function ( renderer, writeBuffer, readBuffer, delta, maskActive ) { if ( maskActive ) renderer.context.disable( renderer.context.STENCIL_TEST ); // Render quad with blured scene into texture (convolution pass 1) this.quad.material = this.materialConvolution; this.convolutionUniforms[ "tDiffuse" ].value = readBuffer.texture; this.convolutionUniforms[ "uImageIncrement" ].value = THREE.BloomPass.blurX; renderer.setRenderTarget(this.renderTargetX); renderer.clear(); renderer.render( this.scene, this.camera ); // Render quad with blured scene into texture (convolution pass 2) this.convolutionUniforms[ "tDiffuse" ].value = this.renderTargetX.texture; this.convolutionUniforms[ "uImageIncrement" ].value = THREE.BloomPass.blurY; renderer.setRenderTarget(this.renderTargetY); renderer.clear(); renderer.render( this.scene, this.camera ); // Render original scene with superimposed blur to texture this.quad.material = this.materialCopy; this.copyUniforms[ "tDiffuse" ].value = this.renderTargetY.texture; if ( maskActive ) renderer.context.enable( renderer.context.STENCIL_TEST ); renderer.setRenderTarget(readBuffer); if (this.clear) renderer.clear(); renderer.render( this.scene, this.camera ); } } ); THREE.BloomPass.blurX = new THREE.Vector2( 0.001953125, 0.0 ); THREE.BloomPass.blurY = new THREE.Vector2( 0.0, 0.001953125 ); /** * @author mrdoob / http://mrdoob.com/ */ THREE.ClearPass = function ( clearColor, clearAlpha ) { THREE.Pass.call( this ); this.needsSwap = false; this.clearColor = ( clearColor !== undefined ) ? clearColor : 0x000000; this.clearAlpha = ( clearAlpha !== undefined ) ? clearAlpha : 0; }; THREE.ClearPass.prototype = Object.assign( Object.create( THREE.Pass.prototype ), { constructor: THREE.ClearPass, render: function ( renderer, writeBuffer, readBuffer, delta, maskActive ) { var oldClearColor, oldClearAlpha; if ( this.clearColor ) { oldClearColor = renderer.getClearColor().getHex(); oldClearAlpha = renderer.getClearAlpha(); renderer.setClearColor( this.clearColor, this.clearAlpha ); } renderer.setRenderTarget( this.renderToScreen ? null : readBuffer ); renderer.clear(); if ( this.clearColor ) { renderer.setClearColor( oldClearColor, oldClearAlpha ); } } } ); /** * @author miibond * Generate a texture that represents the luminosity of the current scene, adapted over time * to simulate the optic nerve responding to the amount of light it is receiving. * Based on a GDC2007 presentation by Wolfgang Engel titled "Post-Processing Pipeline" * * Full-screen tone-mapping shader based on http://www.graphics.cornell.edu/~jaf/publications/sig02_paper.pdf */ THREE.AdaptiveToneMappingPass = function ( adaptive, resolution ) { THREE.Pass.call( this ); this.resolution = ( resolution !== undefined ) ? resolution : 256; this.needsInit = true; this.adaptive = adaptive !== undefined ? !! adaptive : true; this.luminanceRT = null; this.previousLuminanceRT = null; this.currentLuminanceRT = null; if ( THREE.CopyShader === undefined ) console.error( "THREE.AdaptiveToneMappingPass relies on THREE.CopyShader" ); var copyShader = THREE.CopyShader; this.copyUniforms = THREE.UniformsUtils.clone( copyShader.uniforms ); this.materialCopy = new THREE.ShaderMaterial( { uniforms: this.copyUniforms, vertexShader: copyShader.vertexShader, fragmentShader: copyShader.fragmentShader, blending: THREE.NoBlending, depthTest: false } ); if ( THREE.LuminosityShader === undefined ) console.error( "THREE.AdaptiveToneMappingPass relies on THREE.LuminosityShader" ); this.materialLuminance = new THREE.ShaderMaterial( { uniforms: THREE.UniformsUtils.clone( THREE.LuminosityShader.uniforms ), vertexShader: THREE.LuminosityShader.vertexShader, fragmentShader: THREE.LuminosityShader.fragmentShader, blending: THREE.NoBlending } ); this.adaptLuminanceShader = { defines: { "MIP_LEVEL_1X1": ( Math.log( this.resolution ) / Math.log( 2.0 ) ).toFixed( 1 ) }, uniforms: { "lastLum": { value: null }, "currentLum": { value: null }, "minLuminance": { value: 0.01 }, "delta": { value: 0.016 }, "tau": { value: 1.0 } }, vertexShader: [ "varying vec2 vUv;", "void main() {", " vUv = uv;", " gl_Position = projectionMatrix * modelViewMatrix * vec4( position, 1.0 );", "}" ].join( '\n' ), fragmentShader: [ "varying vec2 vUv;", "uniform sampler2D lastLum;", "uniform sampler2D currentLum;", "uniform float minLuminance;", "uniform float delta;", "uniform float tau;", "void main() {", " vec4 lastLum = texture2D( lastLum, vUv, MIP_LEVEL_1X1 );", " vec4 currentLum = texture2D( currentLum, vUv, MIP_LEVEL_1X1 );", " float fLastLum = max( minLuminance, lastLum.r );", " float fCurrentLum = max( minLuminance, currentLum.r );", //The adaption seems to work better in extreme lighting differences //if the input luminance is squared. " fCurrentLum *= fCurrentLum;", // Adapt the luminance using Pattanaik's technique " float fAdaptedLum = fLastLum + (fCurrentLum - fLastLum) * (1.0 - exp(-delta * tau));", // "fAdaptedLum = sqrt(fAdaptedLum);", " gl_FragColor.r = fAdaptedLum;", "}" ].join( '\n' ) }; this.materialAdaptiveLum = new THREE.ShaderMaterial( { uniforms: THREE.UniformsUtils.clone( this.adaptLuminanceShader.uniforms ), vertexShader: this.adaptLuminanceShader.vertexShader, fragmentShader: this.adaptLuminanceShader.fragmentShader, defines: Object.assign( {}, this.adaptLuminanceShader.defines ), blending: THREE.NoBlending } ); if ( THREE.ToneMapShader === undefined ) console.error( "THREE.AdaptiveToneMappingPass relies on THREE.ToneMapShader" ); this.materialToneMap = new THREE.ShaderMaterial( { uniforms: THREE.UniformsUtils.clone( THREE.ToneMapShader.uniforms ), vertexShader: THREE.ToneMapShader.vertexShader, fragmentShader: THREE.ToneMapShader.fragmentShader, blending: THREE.NoBlending } ); this.fsQuad = new THREE.Pass.FullScreenQuad( null ); }; THREE.AdaptiveToneMappingPass.prototype = Object.assign( Object.create( THREE.Pass.prototype ), { constructor: THREE.AdaptiveToneMappingPass, render: function ( renderer, writeBuffer, readBuffer, deltaTime/*, maskActive*/ ) { if ( this.needsInit ) { this.reset( renderer ); this.luminanceRT.texture.type = readBuffer.texture.type; this.previousLuminanceRT.texture.type = readBuffer.texture.type; this.currentLuminanceRT.texture.type = readBuffer.texture.type; this.needsInit = false; } if ( this.adaptive ) { //Render the luminance of the current scene into a render target with mipmapping enabled this.fsQuad.material = this.materialLuminance; this.materialLuminance.uniforms.tDiffuse.value = readBuffer.texture; renderer.setRenderTarget( this.currentLuminanceRT ); this.fsQuad.render( renderer ); //Use the new luminance values, the previous luminance and the frame delta to //adapt the luminance over time. this.fsQuad.material = this.materialAdaptiveLum; this.materialAdaptiveLum.uniforms.delta.value = deltaTime; this.materialAdaptiveLum.uniforms.lastLum.value = this.previousLuminanceRT.texture; this.materialAdaptiveLum.uniforms.currentLum.value = this.currentLuminanceRT.texture; renderer.setRenderTarget( this.luminanceRT ); this.fsQuad.render( renderer ); //Copy the new adapted luminance value so that it can be used by the next frame. this.fsQuad.material = this.materialCopy; this.copyUniforms.tDiffuse.value = this.luminanceRT.texture; renderer.setRenderTarget( this.previousLuminanceRT ); this.fsQuad.render( renderer ); } this.fsQuad.material = this.materialToneMap; this.materialToneMap.uniforms.tDiffuse.value = readBuffer.texture; if ( this.renderToScreen ) { renderer.setRenderTarget( null ); this.fsQuad.render( renderer ); } else { renderer.setRenderTarget( writeBuffer ); if ( this.clear ) renderer.clear(); this.fsQuad.render( renderer ); } }, reset: function () { // render targets if ( this.luminanceRT ) { this.luminanceRT.dispose(); } if ( this.currentLuminanceRT ) { this.currentLuminanceRT.dispose(); } if ( this.previousLuminanceRT ) { this.previousLuminanceRT.dispose(); } var pars = { minFilter: THREE.LinearFilter, magFilter: THREE.LinearFilter, format: THREE.RGBAFormat }; // was RGB format. changed to RGBA format. see discussion in #8415 / #8450 this.luminanceRT = new THREE.WebGLRenderTarget( this.resolution, this.resolution, pars ); this.luminanceRT.texture.name = "AdaptiveToneMappingPass.l"; this.luminanceRT.texture.generateMipmaps = false; this.previousLuminanceRT = new THREE.WebGLRenderTarget( this.resolution, this.resolution, pars ); this.previousLuminanceRT.texture.name = "AdaptiveToneMappingPass.pl"; this.previousLuminanceRT.texture.generateMipmaps = false; // We only need mipmapping for the current luminosity because we want a down-sampled version to sample in our adaptive shader pars.minFilter = THREE.LinearMipmapLinearFilter; pars.generateMipmaps = true; this.currentLuminanceRT = new THREE.WebGLRenderTarget( this.resolution, this.resolution, pars ); this.currentLuminanceRT.texture.name = "AdaptiveToneMappingPass.cl"; if ( this.adaptive ) { this.materialToneMap.defines[ "ADAPTED_LUMINANCE" ] = ""; this.materialToneMap.uniforms.luminanceMap.value = this.luminanceRT.texture; } //Put something in the adaptive luminance texture so that the scene can render initially this.fsQuad.material = new THREE.MeshBasicMaterial( { color: 0x777777 } ); this.materialLuminance.needsUpdate = true; this.materialAdaptiveLum.needsUpdate = true; this.materialToneMap.needsUpdate = true; // renderer.render( this.scene, this.camera, this.luminanceRT ); // renderer.render( this.scene, this.camera, this.previousLuminanceRT ); // renderer.render( this.scene, this.camera, this.currentLuminanceRT ); }, setAdaptive: function ( adaptive ) { if ( adaptive ) { this.adaptive = true; this.materialToneMap.defines[ "ADAPTED_LUMINANCE" ] = ""; this.materialToneMap.uniforms.luminanceMap.value = this.luminanceRT.texture; } else { this.adaptive = false; delete this.materialToneMap.defines[ "ADAPTED_LUMINANCE" ]; this.materialToneMap.uniforms.luminanceMap.value = null; } this.materialToneMap.needsUpdate = true; }, setAdaptionRate: function ( rate ) { if ( rate ) { this.materialAdaptiveLum.uniforms.tau.value = Math.abs( rate ); } }, setMinLuminance: function ( minLum ) { if ( minLum ) { this.materialToneMap.uniforms.minLuminance.value = minLum; this.materialAdaptiveLum.uniforms.minLuminance.value = minLum; } }, setMaxLuminance: function ( maxLum ) { if ( maxLum ) { this.materialToneMap.uniforms.maxLuminance.value = maxLum; } }, setAverageLuminance: function ( avgLum ) { if ( avgLum ) { this.materialToneMap.uniforms.averageLuminance.value = avgLum; } }, setMiddleGrey: function ( middleGrey ) { if ( middleGrey ) { this.materialToneMap.uniforms.middleGrey.value = middleGrey; } }, dispose: function () { if ( this.luminanceRT ) { this.luminanceRT.dispose(); } if ( this.previousLuminanceRT ) { this.previousLuminanceRT.dispose(); } if ( this.currentLuminanceRT ) { this.currentLuminanceRT.dispose(); } if ( this.materialLuminance ) { this.materialLuminance.dispose(); } if ( this.materialAdaptiveLum ) { this.materialAdaptiveLum.dispose(); } if ( this.materialCopy ) { this.materialCopy.dispose(); } if ( this.materialToneMap ) { this.materialToneMap.dispose(); } } } ); /** * @author spidersharma / http://eduperiment.com/ */ /** * UnrealBloomPass is inspired by the bloom pass of Unreal Engine. It creates a * mip map chain of bloom textures and blurs them with different radii. Because * of the weighted combination of mips, and because larger blurs are done on * higher mips, this effect provides good quality and performance. * * Reference: * - https://docs.unrealengine.com/latest/INT/Engine/Rendering/PostProcessEffects/Bloom/ */ THREE.UnrealBloomPass = function ( resolution, strength, radius, threshold ) { THREE.Pass.call( this ); this.strength = ( strength !== undefined ) ? strength : 1; this.radius = radius; this.threshold = threshold; this.resolution = ( resolution !== undefined ) ? new THREE.Vector2( resolution.x, resolution.y ) : new THREE.Vector2( 256, 256 ); // create color only once here, reuse it later inside the render function this.clearColor = new THREE.Color( 0, 0, 0 ); // render targets var pars = { minFilter: THREE.LinearFilter, magFilter: THREE.LinearFilter, format: THREE.RGBAFormat }; this.renderTargetsHorizontal = []; this.renderTargetsVertical = []; this.nMips = 5; var resx = Math.round( this.resolution.x / 2 ); var resy = Math.round( this.resolution.y / 2 ); this.renderTargetBright = new THREE.WebGLRenderTarget( resx, resy, pars ); this.renderTargetBright.texture.name = "UnrealBloomPass.bright"; this.renderTargetBright.texture.generateMipmaps = false; for ( var i = 0; i < this.nMips; i ++ ) { var renderTargetHorizonal = new THREE.WebGLRenderTarget( resx, resy, pars ); renderTargetHorizonal.texture.name = "UnrealBloomPass.h" + i; renderTargetHorizonal.texture.generateMipmaps = false; this.renderTargetsHorizontal.push( renderTargetHorizonal ); var renderTargetVertical = new THREE.WebGLRenderTarget( resx, resy, pars ); renderTargetVertical.texture.name = "UnrealBloomPass.v" + i; renderTargetVertical.texture.generateMipmaps = false; this.renderTargetsVertical.push( renderTargetVertical ); resx = Math.round( resx / 2 ); resy = Math.round( resy / 2 ); } // luminosity high pass material if ( THREE.LuminosityHighPassShader === undefined ) console.error( "THREE.UnrealBloomPass relies on THREE.LuminosityHighPassShader" ); var highPassShader = THREE.LuminosityHighPassShader; this.highPassUniforms = THREE.UniformsUtils.clone( highPassShader.uniforms ); this.highPassUniforms[ "luminosityThreshold" ].value = threshold; this.highPassUniforms[ "smoothWidth" ].value = 0.01; this.materialHighPassFilter = new THREE.ShaderMaterial( { uniforms: this.highPassUniforms, vertexShader: highPassShader.vertexShader, fragmentShader: highPassShader.fragmentShader, defines: {} } ); // Gaussian Blur Materials this.separableBlurMaterials = []; var kernelSizeArray = [ 3, 5, 7, 9, 11 ]; var resx = Math.round( this.resolution.x / 2 ); var resy = Math.round( this.resolution.y / 2 ); for ( var i = 0; i < this.nMips; i ++ ) { this.separableBlurMaterials.push( this.getSeperableBlurMaterial( kernelSizeArray[ i ] ) ); this.separableBlurMaterials[ i ].uniforms[ "texSize" ].value = new THREE.Vector2( resx, resy ); resx = Math.round( resx / 2 ); resy = Math.round( resy / 2 ); } // Composite material this.compositeMaterial = this.getCompositeMaterial( this.nMips ); this.compositeMaterial.uniforms[ "blurTexture1" ].value = this.renderTargetsVertical[ 0 ].texture; this.compositeMaterial.uniforms[ "blurTexture2" ].value = this.renderTargetsVertical[ 1 ].texture; this.compositeMaterial.uniforms[ "blurTexture3" ].value = this.renderTargetsVertical[ 2 ].texture; this.compositeMaterial.uniforms[ "blurTexture4" ].value = this.renderTargetsVertical[ 3 ].texture; this.compositeMaterial.uniforms[ "blurTexture5" ].value = this.renderTargetsVertical[ 4 ].texture; this.compositeMaterial.uniforms[ "bloomStrength" ].value = strength; this.compositeMaterial.uniforms[ "bloomRadius" ].value = 0.1; this.compositeMaterial.needsUpdate = true; var bloomFactors = [ 1.0, 0.8, 0.6, 0.4, 0.2 ]; this.compositeMaterial.uniforms[ "bloomFactors" ].value = bloomFactors; this.bloomTintColors = [ new THREE.Vector3( 1, 1, 1 ), new THREE.Vector3( 1, 1, 1 ), new THREE.Vector3( 1, 1, 1 ), new THREE.Vector3( 1, 1, 1 ), new THREE.Vector3( 1, 1, 1 ) ]; this.compositeMaterial.uniforms[ "bloomTintColors" ].value = this.bloomTintColors; // copy material if ( THREE.CopyShader === undefined ) { console.error( "THREE.UnrealBloomPass relies on THREE.CopyShader" ); } var copyShader = THREE.CopyShader; this.copyUniforms = THREE.UniformsUtils.clone( copyShader.uniforms ); this.copyUniforms[ "opacity" ].value = 1.0; this.materialCopy = new THREE.ShaderMaterial( { uniforms: this.copyUniforms, vertexShader: copyShader.vertexShader, fragmentShader: copyShader.fragmentShader, blending: THREE.AdditiveBlending, depthTest: false, depthWrite: false, transparent: true } ); this.enabled = true; this.needsSwap = false; this.oldClearColor = new THREE.Color(); this.oldClearAlpha = 1; this.basic = new THREE.MeshBasicMaterial(); this.fsQuad = new THREE.Pass.FullScreenQuad( null ); }; THREE.UnrealBloomPass.prototype = Object.assign( Object.create( THREE.Pass.prototype ), { constructor: THREE.UnrealBloomPass, dispose: function () { for ( var i = 0; i < this.renderTargetsHorizontal.length; i ++ ) { this.renderTargetsHorizontal[ i ].dispose(); } for ( var i = 0; i < this.renderTargetsVertical.length; i ++ ) { this.renderTargetsVertical[ i ].dispose(); } this.renderTargetBright.dispose(); }, setSize: function ( width, height ) { var resx = Math.round( width / 2 ); var resy = Math.round( height / 2 ); this.renderTargetBright.setSize( resx, resy ); for ( var i = 0; i < this.nMips; i ++ ) { this.renderTargetsHorizontal[ i ].setSize( resx, resy ); this.renderTargetsVertical[ i ].setSize( resx, resy ); this.separableBlurMaterials[ i ].uniforms[ "texSize" ].value = new THREE.Vector2( resx, resy ); resx = Math.round( resx / 2 ); resy = Math.round( resy / 2 ); } }, render: function ( renderer, writeBuffer, readBuffer, deltaTime, maskActive ) { renderer.getClearColor(this.oldClearColor); this.oldClearAlpha = renderer.getClearAlpha(); var oldAutoClear = renderer.autoClear; renderer.autoClear = false; renderer.setClearColor( this.clearColor, 0 ); if ( maskActive ) renderer.state.buffers.stencil.setTest( false ); // Render input to screen if ( this.renderToScreen ) { this.fsQuad.material = this.basic; this.basic.map = readBuffer.texture; renderer.setRenderTarget( null ); renderer.clear(); this.fsQuad.render( renderer ); } // 1. Extract Bright Areas this.highPassUniforms[ "tDiffuse" ].value = readBuffer.texture; this.highPassUniforms[ "luminosityThreshold" ].value = this.threshold; this.fsQuad.material = this.materialHighPassFilter; renderer.setRenderTarget( this.renderTargetBright ); renderer.clear(); this.fsQuad.render( renderer ); // 2. Blur All the mips progressively var inputRenderTarget = this.renderTargetBright; for ( var i = 0; i < this.nMips; i ++ ) { this.fsQuad.material = this.separableBlurMaterials[ i ]; this.separableBlurMaterials[ i ].uniforms[ "colorTexture" ].value = inputRenderTarget.texture; this.separableBlurMaterials[ i ].uniforms[ "direction" ].value = THREE.UnrealBloomPass.BlurDirectionX; renderer.setRenderTarget( this.renderTargetsHorizontal[ i ] ); renderer.clear(); this.fsQuad.render( renderer ); this.separableBlurMaterials[ i ].uniforms[ "colorTexture" ].value = this.renderTargetsHorizontal[ i ].texture; this.separableBlurMaterials[ i ].uniforms[ "direction" ].value = THREE.UnrealBloomPass.BlurDirectionY; renderer.setRenderTarget( this.renderTargetsVertical[ i ] ); renderer.clear(); this.fsQuad.render( renderer ); inputRenderTarget = this.renderTargetsVertical[ i ]; } // Composite All the mips this.fsQuad.material = this.compositeMaterial; this.compositeMaterial.uniforms[ "bloomStrength" ].value = this.strength; this.compositeMaterial.uniforms[ "bloomRadius" ].value = this.radius; this.compositeMaterial.uniforms[ "bloomTintColors" ].value = this.bloomTintColors; renderer.setRenderTarget( this.renderTargetsHorizontal[ 0 ] ); renderer.clear(); this.fsQuad.render( renderer ); // Blend it additively over the input texture this.fsQuad.material = this.materialCopy; this.copyUniforms[ "tDiffuse" ].value = this.renderTargetsHorizontal[ 0 ].texture; if ( maskActive ) renderer.state.buffers.stencil.setTest( true ); if ( this.renderToScreen ) { renderer.setRenderTarget( null ); this.fsQuad.render( renderer ); } else { renderer.setRenderTarget( readBuffer ); this.fsQuad.render( renderer ); } // Restore renderer settings renderer.setClearColor( this.oldClearColor, this.oldClearAlpha ); renderer.autoClear = oldAutoClear; }, getSeperableBlurMaterial: function ( kernelRadius ) { return new THREE.ShaderMaterial( { defines: { "KERNEL_RADIUS": kernelRadius, "SIGMA": kernelRadius }, uniforms: { "colorTexture": { value: null }, "texSize": { value: new THREE.Vector2( 0.5, 0.5 ) }, "direction": { value: new THREE.Vector2( 0.5, 0.5 ) } }, vertexShader: "varying vec2 vUv;\n\ void main() {\n\ vUv = uv;\n\ gl_Position = projectionMatrix * modelViewMatrix * vec4( position, 1.0 );\n\ }", fragmentShader: "#include <common>\ varying vec2 vUv;\n\ uniform sampler2D colorTexture;\n\ uniform vec2 texSize;\ uniform vec2 direction;\ \ float gaussianPdf(in float x, in float sigma) {\ return 0.39894 * exp( -0.5 * x * x/( sigma * sigma))/sigma;\ }\ void main() {\n\ vec2 invSize = 1.0 / texSize;\ float fSigma = float(SIGMA);\ float weightSum = gaussianPdf(0.0, fSigma);\ vec3 diffuseSum = texture2D( colorTexture, vUv).rgb * weightSum;\ for( int i = 1; i < KERNEL_RADIUS; i ++ ) {\ float x = float(i);\ float w = gaussianPdf(x, fSigma);\ vec2 uvOffset = direction * invSize * x;\ vec3 sample1 = texture2D( colorTexture, vUv + uvOffset).rgb;\ vec3 sample2 = texture2D( colorTexture, vUv - uvOffset).rgb;\ diffuseSum += (sample1 + sample2) * w;\ weightSum += 2.0 * w;\ }\ gl_FragColor = vec4(diffuseSum/weightSum, 1.0);\n\ }" } ); }, getCompositeMaterial: function ( nMips ) { return new THREE.ShaderMaterial( { defines: { "NUM_MIPS": nMips }, uniforms: { "blurTexture1": { value: null }, "blurTexture2": { value: null }, "blurTexture3": { value: null }, "blurTexture4": { value: null }, "blurTexture5": { value: null }, "dirtTexture": { value: null }, "bloomStrength": { value: 1.0 }, "bloomFactors": { value: null }, "bloomTintColors": { value: null }, "bloomRadius": { value: 0.0 } }, vertexShader: "varying vec2 vUv;\n\ void main() {\n\ vUv = uv;\n\ gl_Position = projectionMatrix * modelViewMatrix * vec4( position, 1.0 );\n\ }", fragmentShader: "varying vec2 vUv;\ uniform sampler2D blurTexture1;\ uniform sampler2D blurTexture2;\ uniform sampler2D blurTexture3;\ uniform sampler2D blurTexture4;\ uniform sampler2D blurTexture5;\ uniform sampler2D dirtTexture;\ uniform float bloomStrength;\ uniform float bloomRadius;\ uniform float bloomFactors[NUM_MIPS];\ uniform vec3 bloomTintColors[NUM_MIPS];\ \ float lerpBloomFactor(const in float factor) { \ float mirrorFactor = 1.2 - factor;\ return mix(factor, mirrorFactor, bloomRadius);\ }\ \ void main() {\ gl_FragColor = bloomStrength * ( lerpBloomFactor(bloomFactors[0]) * vec4(bloomTintColors[0], 1.0) * texture2D(blurTexture1, vUv) + \ lerpBloomFactor(bloomFactors[1]) * vec4(bloomTintColors[1], 1.0) * texture2D(blurTexture2, vUv) + \ lerpBloomFactor(bloomFactors[2]) * vec4(bloomTintColors[2], 1.0) * texture2D(blurTexture3, vUv) + \ lerpBloomFactor(bloomFactors[3]) * vec4(bloomTintColors[3], 1.0) * texture2D(blurTexture4, vUv) + \ lerpBloomFactor(bloomFactors[4]) * vec4(bloomTintColors[4], 1.0) * texture2D(blurTexture5, vUv) );\ }" } ); } } ); THREE.UnrealBloomPass.BlurDirectionX = new THREE.Vector2( 1.0, 0.0 ); THREE.UnrealBloomPass.BlurDirectionY = new THREE.Vector2( 0.0, 1.0 ); /** * @author Mugen87 / https://github.com/Mugen87 */ THREE.SSAOPass = function ( scene, camera, width, height ) { THREE.Pass.call( this ); this.width = ( width !== undefined ) ? width : 512; this.height = ( height !== undefined ) ? height : 512; this.clear = true; this.camera = camera; this.scene = scene; this.kernelRadius = 8; this.kernelSize = 32; this.kernel = []; this.noiseTexture = null; this.output = 0; this.minDistance = 0.005; this.maxDistance = 0.1; // this.generateSampleKernel(); this.generateRandomKernelRotations(); // beauty render target with depth buffer var depthTexture = new THREE.DepthTexture(); depthTexture.type = THREE.UnsignedInt248Type; depthTexture.format = THREE.DepthStencilFormat; depthTexture.minFilter = THREE.NearestFilter; depthTexture.maxFilter = THREE.NearestFilter; this.beautyRenderTarget = new THREE.WebGLRenderTarget( this.width, this.height, { minFilter: THREE.LinearFilter, magFilter: THREE.LinearFilter, format: THREE.RGBAFormat, depthTexture: depthTexture, depthBuffer: true } ); // normal render target this.normalRenderTarget = new THREE.WebGLRenderTarget( this.width, this.height, { minFilter: THREE.NearestFilter, magFilter: THREE.NearestFilter, format: THREE.RGBAFormat } ); // ssao render target this.ssaoRenderTarget = new THREE.WebGLRenderTarget( this.width, this.height, { minFilter: THREE.LinearFilter, magFilter: THREE.LinearFilter, format: THREE.RGBAFormat } ); this.blurRenderTarget = this.ssaoRenderTarget.clone(); // ssao material if ( THREE.SSAOShader === undefined ) { console.error( 'THREE.SSAOPass: The pass relies on THREE.SSAOShader.' ); } this.ssaoMaterial = new THREE.ShaderMaterial( { defines: Object.assign( {}, THREE.SSAOShader.defines ), uniforms: THREE.UniformsUtils.clone( THREE.SSAOShader.uniforms ), vertexShader: THREE.SSAOShader.vertexShader, fragmentShader: THREE.SSAOShader.fragmentShader, blending: THREE.NoBlending } ); this.ssaoMaterial.uniforms[ 'tDiffuse' ].value = this.beautyRenderTarget.texture; this.ssaoMaterial.uniforms[ 'tNormal' ].value = this.normalRenderTarget.texture; this.ssaoMaterial.uniforms[ 'tDepth' ].value = this.beautyRenderTarget.depthTexture; this.ssaoMaterial.uniforms[ 'tNoise' ].value = this.noiseTexture; this.ssaoMaterial.uniforms[ 'kernel' ].value = this.kernel; this.ssaoMaterial.uniforms[ 'cameraNear' ].value = this.camera.near; this.ssaoMaterial.uniforms[ 'cameraFar' ].value = this.camera.far; this.ssaoMaterial.uniforms[ 'resolution' ].value.set( this.width, this.height ); this.ssaoMaterial.uniforms[ 'cameraProjectionMatrix' ].value.copy( this.camera.projectionMatrix ); this.ssaoMaterial.uniforms[ 'cameraInverseProjectionMatrix' ].value.getInverse( this.camera.projectionMatrix ); // normal material this.normalMaterial = new THREE.MeshNormalMaterial(); this.normalMaterial.blending = THREE.NoBlending; // blur material this.blurMaterial = new THREE.ShaderMaterial( { defines: Object.assign( {}, THREE.SSAOBlurShader.defines ), uniforms: THREE.UniformsUtils.clone( THREE.SSAOBlurShader.uniforms ), vertexShader: THREE.SSAOBlurShader.vertexShader, fragmentShader: THREE.SSAOBlurShader.fragmentShader } ); this.blurMaterial.uniforms[ 'tDiffuse' ].value = this.ssaoRenderTarget.texture; this.blurMaterial.uniforms[ 'resolution' ].value.set( this.width, this.height ); // material for rendering the depth this.depthRenderMaterial = new THREE.ShaderMaterial( { defines: Object.assign( {}, THREE.SSAODepthShader.defines ), uniforms: THREE.UniformsUtils.clone( THREE.SSAODepthShader.uniforms ), vertexShader: THREE.SSAODepthShader.vertexShader, fragmentShader: THREE.SSAODepthShader.fragmentShader, blending: THREE.NoBlending } ); this.depthRenderMaterial.uniforms[ 'tDepth' ].value = this.beautyRenderTarget.depthTexture; this.depthRenderMaterial.uniforms[ 'cameraNear' ].value = this.camera.near; this.depthRenderMaterial.uniforms[ 'cameraFar' ].value = this.camera.far; // material for rendering the content of a render target this.copyMaterial = new THREE.ShaderMaterial( { uniforms: THREE.UniformsUtils.clone( THREE.CopyShader.uniforms ), vertexShader: THREE.CopyShader.vertexShader, fragmentShader: THREE.CopyShader.fragmentShader, transparent: true, depthTest: false, depthWrite: false, blendSrc: THREE.DstColorFactor, blendDst: THREE.ZeroFactor, blendEquation: THREE.AddEquation, blendSrcAlpha: THREE.DstAlphaFactor, blendDstAlpha: THREE.ZeroFactor, blendEquationAlpha: THREE.AddEquation } ); this.fsQuad = new THREE.Pass.FullScreenQuad( null ); this.originalClearColor = new THREE.Color(); }; THREE.SSAOPass.prototype = Object.assign( Object.create( THREE.Pass.prototype ), { constructor: THREE.SSAOPass, dispose: function () { // dispose render targets this.beautyRenderTarget.dispose(); this.normalRenderTarget.dispose(); this.ssaoRenderTarget.dispose(); this.blurRenderTarget.dispose(); // dispose materials this.normalMaterial.dispose(); this.blurMaterial.dispose(); this.copyMaterial.dispose(); this.depthRenderMaterial.dispose(); // dipsose full screen quad this.fsQuad.dispose(); }, render: function ( renderer, writeBuffer /*, readBuffer, deltaTime, maskActive */ ) { // render beauty and depth renderer.setRenderTarget( this.beautyRenderTarget ); renderer.clear(); renderer.render( this.scene, this.camera ); // render normals this.renderOverride( renderer, this.normalMaterial, this.normalRenderTarget, 0x7777ff, 1.0 ); // render SSAO this.ssaoMaterial.uniforms[ 'kernelRadius' ].value = this.kernelRadius; this.ssaoMaterial.uniforms[ 'minDistance' ].value = this.minDistance; this.ssaoMaterial.uniforms[ 'maxDistance' ].value = this.maxDistance; this.renderPass( renderer, this.ssaoMaterial, this.ssaoRenderTarget ); // render blur this.renderPass( renderer, this.blurMaterial, this.blurRenderTarget ); // output result to screen switch ( this.output ) { case THREE.SSAOPass.OUTPUT.SSAO: this.copyMaterial.uniforms[ 'tDiffuse' ].value = this.ssaoRenderTarget.texture; this.copyMaterial.blending = THREE.NoBlending; this.renderPass( renderer, this.copyMaterial, this.renderToScreen ? null : writeBuffer ); break; case THREE.SSAOPass.OUTPUT.Blur: this.copyMaterial.uniforms[ 'tDiffuse' ].value = this.blurRenderTarget.texture; this.copyMaterial.blending = THREE.NoBlending; this.renderPass( renderer, this.copyMaterial, this.renderToScreen ? null : writeBuffer ); break; case THREE.SSAOPass.OUTPUT.Beauty: this.copyMaterial.uniforms[ 'tDiffuse' ].value = this.beautyRenderTarget.texture; this.copyMaterial.blending = THREE.NoBlending; this.renderPass( renderer, this.copyMaterial, this.renderToScreen ? null : writeBuffer ); break; case THREE.SSAOPass.OUTPUT.Depth: this.renderPass( renderer, this.depthRenderMaterial, this.renderToScreen ? null : writeBuffer ); break; case THREE.SSAOPass.OUTPUT.Normal: this.copyMaterial.uniforms[ 'tDiffuse' ].value = this.normalRenderTarget.texture; this.copyMaterial.blending = THREE.NoBlending; this.renderPass( renderer, this.copyMaterial, this.renderToScreen ? null : writeBuffer ); break; case THREE.SSAOPass.OUTPUT.Default: this.copyMaterial.uniforms[ 'tDiffuse' ].value = this.beautyRenderTarget.texture; this.copyMaterial.blending = THREE.NoBlending; this.renderPass( renderer, this.copyMaterial, this.renderToScreen ? null : writeBuffer ); this.copyMaterial.uniforms[ 'tDiffuse' ].value = this.blurRenderTarget.texture; this.copyMaterial.blending = THREE.CustomBlending; this.renderPass( renderer, this.copyMaterial, this.renderToScreen ? null : writeBuffer ); break; default: console.warn( 'THREE.SSAOPass: Unknown output type.' ); } }, renderPass: function ( renderer, passMaterial, renderTarget, clearColor, clearAlpha ) { // save original state this.originalClearColor.copy( renderer.getClearColor() ); var originalClearAlpha = renderer.getClearAlpha(); var originalAutoClear = renderer.autoClear; renderer.setRenderTarget( renderTarget ); // setup pass state renderer.autoClear = false; if ( ( clearColor !== undefined ) && ( clearColor !== null ) ) { renderer.setClearColor( clearColor ); renderer.setClearAlpha( clearAlpha || 0.0 ); renderer.clear(); } this.fsQuad.material = passMaterial; this.fsQuad.render( renderer ); // restore original state renderer.autoClear = originalAutoClear; renderer.setClearColor( this.originalClearColor ); renderer.setClearAlpha( originalClearAlpha ); }, renderOverride: function ( renderer, overrideMaterial, renderTarget, clearColor, clearAlpha ) { this.originalClearColor.copy( renderer.getClearColor() ); var originalClearAlpha = renderer.getClearAlpha(); var originalAutoClear = renderer.autoClear; renderer.setRenderTarget( renderTarget ); renderer.autoClear = false; clearColor = overrideMaterial.clearColor || clearColor; clearAlpha = overrideMaterial.clearAlpha || clearAlpha; if ( ( clearColor !== undefined ) && ( clearColor !== null ) ) { renderer.setClearColor( clearColor ); renderer.setClearAlpha( clearAlpha || 0.0 ); renderer.clear(); } this.scene.overrideMaterial = overrideMaterial; renderer.render( this.scene, this.camera ); this.scene.overrideMaterial = null; // restore original state renderer.autoClear = originalAutoClear; renderer.setClearColor( this.originalClearColor ); renderer.setClearAlpha( originalClearAlpha ); }, setSize: function ( width, height ) { this.width = width; this.height = height; this.beautyRenderTarget.setSize( width, height ); this.ssaoRenderTarget.setSize( width, height ); this.normalRenderTarget.setSize( width, height ); this.blurRenderTarget.setSize( width, height ); this.ssaoMaterial.uniforms[ 'resolution' ].value.set( width, height ); this.ssaoMaterial.uniforms[ 'cameraProjectionMatrix' ].value.copy( this.camera.projectionMatrix ); this.ssaoMaterial.uniforms[ 'cameraInverseProjectionMatrix' ].value.getInverse( this.camera.projectionMatrix ); this.blurMaterial.uniforms[ 'resolution' ].value.set( width, height ); }, generateSampleKernel: function () { var kernelSize = this.kernelSize; var kernel = this.kernel; for ( var i = 0; i < kernelSize; i ++ ) { var sample = new THREE.Vector3(); sample.x = ( Math.random() * 2 ) - 1; sample.y = ( Math.random() * 2 ) - 1; sample.z = Math.random(); sample.normalize(); var scale = i / kernelSize; scale = THREE.MathUtils.lerp( 0.1, 1, scale * scale ); sample.multiplyScalar( scale ); kernel.push( sample ); } }, generateRandomKernelRotations: function () { var width = 4, height = 4; if ( THREE.SimplexNoise === undefined ) { console.error( 'THREE.SSAOPass: The pass relies on THREE.SimplexNoise.' ); } var simplex = new THREE.SimplexNoise(); var size = width * height; var data = new Float32Array( size * 4 ); for ( var i = 0; i < size; i ++ ) { var stride = i * 4; var x = ( Math.random() * 2 ) - 1; var y = ( Math.random() * 2 ) - 1; var z = 0; var noise = simplex.noise3d( x, y, z ); data[ stride ] = noise; data[ stride + 1 ] = noise; data[ stride + 2 ] = noise; data[ stride + 3 ] = 1; } this.noiseTexture = new THREE.DataTexture( data, width, height, THREE.RGBAFormat, THREE.FloatType ); this.noiseTexture.wrapS = THREE.RepeatWrapping; this.noiseTexture.wrapT = THREE.RepeatWrapping; } } ); THREE.SSAOPass.OUTPUT = { 'Default': 0, 'SSAO': 1, 'Blur': 2, 'Beauty': 3, 'Depth': 4, 'Normal': 5 };