UNPKG

elation-engine

Version:
2,043 lines (1,248 loc) 213 kB
( function () { function computeTangents() { throw new Error( 'BufferGeometryUtils: computeTangents renamed to computeMikkTSpaceTangents.' ); } function computeMikkTSpaceTangents( geometry, MikkTSpace, negateSign = true ) { if ( ! MikkTSpace || ! MikkTSpace.isReady ) { throw new Error( 'BufferGeometryUtils: Initialized MikkTSpace library required.' ); } if ( ! geometry.hasAttribute( 'position' ) || ! geometry.hasAttribute( 'normal' ) || ! geometry.hasAttribute( 'uv' ) ) { throw new Error( 'BufferGeometryUtils: Tangents require "position", "normal", and "uv" attributes.' ); } function getAttributeArray( attribute ) { if ( attribute.normalized || attribute.isInterleavedBufferAttribute ) { const srcArray = attribute.isInterleavedBufferAttribute ? attribute.data.array : attribute.array; const dstArray = new Float32Array( attribute.getCount() * attribute.itemSize ); for ( let i = 0, j = 0; i < attribute.getCount(); i ++ ) { dstArray[ j ++ ] = THREE.MathUtils.denormalize( attribute.getX( i ), srcArray ); dstArray[ j ++ ] = THREE.MathUtils.denormalize( attribute.getY( i ), srcArray ); if ( attribute.itemSize > 2 ) { dstArray[ j ++ ] = THREE.MathUtils.denormalize( attribute.getZ( i ), srcArray ); } } return dstArray; } if ( attribute.array instanceof Float32Array ) { return attribute.array; } return new Float32Array( attribute.array ); } // MikkTSpace algorithm requires non-indexed input. const _geometry = geometry.index ? geometry.toNonIndexed() : geometry; // Compute vertex tangents. const tangents = MikkTSpace.generateTangents( getAttributeArray( _geometry.attributes.position ), getAttributeArray( _geometry.attributes.normal ), getAttributeArray( _geometry.attributes.uv ) ); // Texture coordinate convention of glTF differs from the apparent // default of the MikkTSpace library; .w component must be flipped. if ( negateSign ) { for ( let i = 3; i < tangents.length; i += 4 ) { tangents[ i ] *= - 1; } } // _geometry.setAttribute( 'tangent', new THREE.BufferAttribute( tangents, 4 ) ); if ( geometry !== _geometry ) { geometry.copy( _geometry ); } return geometry; } /** * @param {Array<BufferGeometry>} geometries * @param {Boolean} useGroups * @return {BufferGeometry} */ function mergeBufferGeometries( geometries, useGroups = false ) { const isIndexed = geometries[ 0 ].index !== null; const attributesUsed = new Set( Object.keys( geometries[ 0 ].attributes ) ); const morphAttributesUsed = new Set( Object.keys( geometries[ 0 ].morphAttributes ) ); const attributes = {}; const morphAttributes = {}; const morphTargetsRelative = geometries[ 0 ].morphTargetsRelative; const mergedGeometry = new THREE.BufferGeometry(); let offset = 0; for ( let i = 0; i < geometries.length; ++ i ) { const geometry = geometries[ i ]; let attributesCount = 0; // ensure that all geometries are indexed, or none if ( isIndexed !== ( geometry.index !== null ) ) { console.error( 'THREE.BufferGeometryUtils: .mergeBufferGeometries() failed with geometry at index ' + i + '. All geometries must have compatible attributes; make sure index attribute exists among all geometries, or in none of them.' ); return null; } // gather attributes, exit early if they're different for ( const name in geometry.attributes ) { if ( ! attributesUsed.has( name ) ) { console.error( 'THREE.BufferGeometryUtils: .mergeBufferGeometries() failed with geometry at index ' + i + '. All geometries must have compatible attributes; make sure "' + name + '" attribute exists among all geometries, or in none of them.' ); return null; } if ( attributes[ name ] === undefined ) attributes[ name ] = []; attributes[ name ].push( geometry.attributes[ name ] ); attributesCount ++; } // ensure geometries have the same number of attributes if ( attributesCount !== attributesUsed.size ) { console.error( 'THREE.BufferGeometryUtils: .mergeBufferGeometries() failed with geometry at index ' + i + '. Make sure all geometries have the same number of attributes.' ); return null; } // gather morph attributes, exit early if they're different if ( morphTargetsRelative !== geometry.morphTargetsRelative ) { console.error( 'THREE.BufferGeometryUtils: .mergeBufferGeometries() failed with geometry at index ' + i + '. .morphTargetsRelative must be consistent throughout all geometries.' ); return null; } for ( const name in geometry.morphAttributes ) { if ( ! morphAttributesUsed.has( name ) ) { console.error( 'THREE.BufferGeometryUtils: .mergeBufferGeometries() failed with geometry at index ' + i + '. .morphAttributes must be consistent throughout all geometries.' ); return null; } if ( morphAttributes[ name ] === undefined ) morphAttributes[ name ] = []; morphAttributes[ name ].push( geometry.morphAttributes[ name ] ); } // gather .userData mergedGeometry.userData.mergedUserData = mergedGeometry.userData.mergedUserData || []; mergedGeometry.userData.mergedUserData.push( geometry.userData ); if ( useGroups ) { let count; if ( isIndexed ) { count = geometry.index.count; } else if ( geometry.attributes.position !== undefined ) { count = geometry.attributes.position.count; } else { console.error( 'THREE.BufferGeometryUtils: .mergeBufferGeometries() failed with geometry at index ' + i + '. The geometry must have either an index or a position attribute' ); return null; } mergedGeometry.addGroup( offset, count, i ); offset += count; } } // merge indices if ( isIndexed ) { let indexOffset = 0; const mergedIndex = []; for ( let i = 0; i < geometries.length; ++ i ) { const index = geometries[ i ].index; for ( let j = 0; j < index.count; ++ j ) { mergedIndex.push( index.getX( j ) + indexOffset ); } indexOffset += geometries[ i ].attributes.position.count; } mergedGeometry.setIndex( mergedIndex ); } // merge attributes for ( const name in attributes ) { const mergedAttribute = mergeBufferAttributes( attributes[ name ] ); if ( ! mergedAttribute ) { console.error( 'THREE.BufferGeometryUtils: .mergeBufferGeometries() failed while trying to merge the ' + name + ' attribute.' ); return null; } mergedGeometry.setAttribute( name, mergedAttribute ); } // merge morph attributes for ( const name in morphAttributes ) { const numMorphTargets = morphAttributes[ name ][ 0 ].length; if ( numMorphTargets === 0 ) break; mergedGeometry.morphAttributes = mergedGeometry.morphAttributes || {}; mergedGeometry.morphAttributes[ name ] = []; for ( let i = 0; i < numMorphTargets; ++ i ) { const morphAttributesToMerge = []; for ( let j = 0; j < morphAttributes[ name ].length; ++ j ) { morphAttributesToMerge.push( morphAttributes[ name ][ j ][ i ] ); } const mergedMorphAttribute = mergeBufferAttributes( morphAttributesToMerge ); if ( ! mergedMorphAttribute ) { console.error( 'THREE.BufferGeometryUtils: .mergeBufferGeometries() failed while trying to merge the ' + name + ' morphAttribute.' ); return null; } mergedGeometry.morphAttributes[ name ].push( mergedMorphAttribute ); } } return mergedGeometry; } /** * @param {Array<BufferAttribute>} attributes * @return {BufferAttribute} */ function mergeBufferAttributes( attributes ) { let TypedArray; let itemSize; let normalized; let arrayLength = 0; for ( let i = 0; i < attributes.length; ++ i ) { const attribute = attributes[ i ]; if ( attribute.isInterleavedBufferAttribute ) { console.error( 'THREE.BufferGeometryUtils: .mergeBufferAttributes() failed. InterleavedBufferAttributes are not supported.' ); return null; } if ( TypedArray === undefined ) TypedArray = attribute.array.constructor; if ( TypedArray !== attribute.array.constructor ) { console.error( 'THREE.BufferGeometryUtils: .mergeBufferAttributes() failed. THREE.BufferAttribute.array must be of consistent array types across matching attributes.' ); return null; } if ( itemSize === undefined ) itemSize = attribute.itemSize; if ( itemSize !== attribute.itemSize ) { console.error( 'THREE.BufferGeometryUtils: .mergeBufferAttributes() failed. THREE.BufferAttribute.itemSize must be consistent across matching attributes.' ); return null; } if ( normalized === undefined ) normalized = attribute.normalized; if ( normalized !== attribute.normalized ) { console.error( 'THREE.BufferGeometryUtils: .mergeBufferAttributes() failed. THREE.BufferAttribute.normalized must be consistent across matching attributes.' ); return null; } arrayLength += attribute.array.length; } const array = new TypedArray( arrayLength ); let offset = 0; for ( let i = 0; i < attributes.length; ++ i ) { array.set( attributes[ i ].array, offset ); offset += attributes[ i ].array.length; } return new THREE.BufferAttribute( array, itemSize, normalized ); } /** * @param {Array<BufferAttribute>} attributes * @return {Array<InterleavedBufferAttribute>} */ function interleaveAttributes( attributes ) { // Interleaves the provided attributes into an THREE.InterleavedBuffer and returns // a set of InterleavedBufferAttributes for each attribute let TypedArray; let arrayLength = 0; let stride = 0; // calculate the the length and type of the interleavedBuffer for ( let i = 0, l = attributes.length; i < l; ++ i ) { const attribute = attributes[ i ]; if ( TypedArray === undefined ) TypedArray = attribute.array.constructor; if ( TypedArray !== attribute.array.constructor ) { console.error( 'AttributeBuffers of different types cannot be interleaved' ); return null; } arrayLength += attribute.array.length; stride += attribute.itemSize; } // Create the set of buffer attributes const interleavedBuffer = new THREE.InterleavedBuffer( new TypedArray( arrayLength ), stride ); let offset = 0; const res = []; const getters = [ 'getX', 'getY', 'getZ', 'getW' ]; const setters = [ 'setX', 'setY', 'setZ', 'setW' ]; for ( let j = 0, l = attributes.length; j < l; j ++ ) { const attribute = attributes[ j ]; const itemSize = attribute.itemSize; const count = attribute.count; const iba = new THREE.InterleavedBufferAttribute( interleavedBuffer, itemSize, offset, attribute.normalized ); res.push( iba ); offset += itemSize; // Move the data for each attribute into the new interleavedBuffer // at the appropriate offset for ( let c = 0; c < count; c ++ ) { for ( let k = 0; k < itemSize; k ++ ) { iba[ setters[ k ] ]( c, attribute[ getters[ k ] ]( c ) ); } } } return res; } // returns a new, non-interleaved version of the provided attribute function deinterleaveAttribute( attribute ) { const cons = attribute.data.array.constructor; const count = attribute.count; const itemSize = attribute.itemSize; const normalized = attribute.normalized; const array = new cons( count * itemSize ); let newAttribute; if ( attribute.isInstancedInterleavedBufferAttribute ) { newAttribute = new InstancedBufferAttribute( array, itemSize, normalized, attribute.meshPerAttribute ); } else { newAttribute = new THREE.BufferAttribute( array, itemSize, normalized ); } for ( let i = 0; i < count; i ++ ) { newAttribute.setX( i, attribute.getX( i ) ); if ( itemSize >= 2 ) { newAttribute.setY( i, attribute.getY( i ) ); } if ( itemSize >= 3 ) { newAttribute.setZ( i, attribute.getZ( i ) ); } if ( itemSize >= 4 ) { newAttribute.setW( i, attribute.getW( i ) ); } } return newAttribute; } // deinterleaves all attributes on the geometry function deinterleaveGeometry( geometry ) { const attributes = geometry.attributes; const morphTargets = geometry.morphTargets; const attrMap = new Map(); for ( const key in attributes ) { const attr = attributes[ key ]; if ( attr.isInterleavedBufferAttribute ) { if ( ! attrMap.has( attr ) ) { attrMap.set( attr, deinterleaveAttribute( attr ) ); } attributes[ key ] = attrMap.get( attr ); } } for ( const key in morphTargets ) { const attr = morphTargets[ key ]; if ( attr.isInterleavedBufferAttribute ) { if ( ! attrMap.has( attr ) ) { attrMap.set( attr, deinterleaveAttribute( attr ) ); } morphTargets[ key ] = attrMap.get( attr ); } } } /** * @param {Array<BufferGeometry>} geometry * @return {number} */ function estimateBytesUsed( geometry ) { // Return the estimated memory used by this geometry in bytes // Calculate using itemSize, count, and BYTES_PER_ELEMENT to account // for InterleavedBufferAttributes. let mem = 0; for ( const name in geometry.attributes ) { const attr = geometry.getAttribute( name ); mem += attr.count * attr.itemSize * attr.array.BYTES_PER_ELEMENT; } const indices = geometry.getIndex(); mem += indices ? indices.count * indices.itemSize * indices.array.BYTES_PER_ELEMENT : 0; return mem; } /** * @param {BufferGeometry} geometry * @param {number} tolerance * @return {BufferGeometry>} */ function mergeVertices( geometry, tolerance = 1e-4 ) { tolerance = Math.max( tolerance, Number.EPSILON ); // Generate an index buffer if the geometry doesn't have one, or optimize it // if it's already available. const hashToIndex = {}; const indices = geometry.getIndex(); const positions = geometry.getAttribute( 'position' ); const vertexCount = indices ? indices.count : positions.count; // next value for triangle indices let nextIndex = 0; // attributes and new attribute arrays const attributeNames = Object.keys( geometry.attributes ); const attrArrays = {}; const morphAttrsArrays = {}; const newIndices = []; const getters = [ 'getX', 'getY', 'getZ', 'getW' ]; // initialize the arrays for ( let i = 0, l = attributeNames.length; i < l; i ++ ) { const name = attributeNames[ i ]; attrArrays[ name ] = []; const morphAttr = geometry.morphAttributes[ name ]; if ( morphAttr ) { morphAttrsArrays[ name ] = new Array( morphAttr.length ).fill().map( () => [] ); } } // convert the error tolerance to an amount of decimal places to truncate to const decimalShift = Math.log10( 1 / tolerance ); const shiftMultiplier = Math.pow( 10, decimalShift ); for ( let i = 0; i < vertexCount; i ++ ) { const index = indices ? indices.getX( i ) : i; // Generate a hash for the vertex attributes at the current index 'i' let hash = ''; for ( let j = 0, l = attributeNames.length; j < l; j ++ ) { const name = attributeNames[ j ]; const attribute = geometry.getAttribute( name ); const itemSize = attribute.itemSize; for ( let k = 0; k < itemSize; k ++ ) { // double tilde truncates the decimal value hash += `${~ ~ ( attribute[ getters[ k ] ]( index ) * shiftMultiplier )},`; } } // Add another reference to the vertex if it's already // used by another index if ( hash in hashToIndex ) { newIndices.push( hashToIndex[ hash ] ); } else { // copy data to the new index in the attribute arrays for ( let j = 0, l = attributeNames.length; j < l; j ++ ) { const name = attributeNames[ j ]; const attribute = geometry.getAttribute( name ); const morphAttr = geometry.morphAttributes[ name ]; const itemSize = attribute.itemSize; const newarray = attrArrays[ name ]; const newMorphArrays = morphAttrsArrays[ name ]; for ( let k = 0; k < itemSize; k ++ ) { const getterFunc = getters[ k ]; newarray.push( attribute[ getterFunc ]( index ) ); if ( morphAttr ) { for ( let m = 0, ml = morphAttr.length; m < ml; m ++ ) { newMorphArrays[ m ].push( morphAttr[ m ][ getterFunc ]( index ) ); } } } } hashToIndex[ hash ] = nextIndex; newIndices.push( nextIndex ); nextIndex ++; } } // Generate typed arrays from new attribute arrays and update // the attributeBuffers const result = geometry.clone(); for ( let i = 0, l = attributeNames.length; i < l; i ++ ) { const name = attributeNames[ i ]; const oldAttribute = geometry.getAttribute( name ); const buffer = new oldAttribute.array.constructor( attrArrays[ name ] ); const attribute = new THREE.BufferAttribute( buffer, oldAttribute.itemSize, oldAttribute.normalized ); result.setAttribute( name, attribute ); // Update the attribute arrays if ( name in morphAttrsArrays ) { for ( let j = 0; j < morphAttrsArrays[ name ].length; j ++ ) { const oldMorphAttribute = geometry.morphAttributes[ name ][ j ]; const buffer = new oldMorphAttribute.array.constructor( morphAttrsArrays[ name ][ j ] ); const morphAttribute = new THREE.BufferAttribute( buffer, oldMorphAttribute.itemSize, oldMorphAttribute.normalized ); result.morphAttributes[ name ][ j ] = morphAttribute; } } } // indices result.setIndex( newIndices ); return result; } /** * @param {BufferGeometry} geometry * @param {number} drawMode * @return {BufferGeometry>} */ function toTrianglesDrawMode( geometry, drawMode ) { if ( drawMode === THREE.TrianglesDrawMode ) { console.warn( 'THREE.BufferGeometryUtils.toTrianglesDrawMode(): Geometry already defined as triangles.' ); return geometry; } if ( drawMode === THREE.TriangleFanDrawMode || drawMode === THREE.TriangleStripDrawMode ) { let index = geometry.getIndex(); // generate index if not present if ( index === null ) { const indices = []; const position = geometry.getAttribute( 'position' ); if ( position !== undefined ) { for ( let i = 0; i < position.count; i ++ ) { indices.push( i ); } geometry.setIndex( indices ); index = geometry.getIndex(); } else { console.error( 'THREE.BufferGeometryUtils.toTrianglesDrawMode(): Undefined position attribute. Processing not possible.' ); return geometry; } } // const numberOfTriangles = index.count - 2; const newIndices = []; if ( drawMode === THREE.TriangleFanDrawMode ) { // gl.TRIANGLE_FAN for ( let i = 1; i <= numberOfTriangles; i ++ ) { newIndices.push( index.getX( 0 ) ); newIndices.push( index.getX( i ) ); newIndices.push( index.getX( i + 1 ) ); } } else { // gl.TRIANGLE_STRIP for ( let i = 0; i < numberOfTriangles; i ++ ) { if ( i % 2 === 0 ) { newIndices.push( index.getX( i ) ); newIndices.push( index.getX( i + 1 ) ); newIndices.push( index.getX( i + 2 ) ); } else { newIndices.push( index.getX( i + 2 ) ); newIndices.push( index.getX( i + 1 ) ); newIndices.push( index.getX( i ) ); } } } if ( newIndices.length / 3 !== numberOfTriangles ) { console.error( 'THREE.BufferGeometryUtils.toTrianglesDrawMode(): Unable to generate correct amount of triangles.' ); } // build final geometry const newGeometry = geometry.clone(); newGeometry.setIndex( newIndices ); newGeometry.clearGroups(); return newGeometry; } else { console.error( 'THREE.BufferGeometryUtils.toTrianglesDrawMode(): Unknown draw mode:', drawMode ); return geometry; } } /** * Calculates the morphed attributes of a morphed/skinned THREE.BufferGeometry. * Helpful for Raytracing or Decals. * @param {Mesh | Line | Points} object An instance of Mesh, Line or Points. * @return {Object} An Object with original position/normal attributes and morphed ones. */ function computeMorphedAttributes( object ) { if ( object.geometry.isBufferGeometry !== true ) { console.error( 'THREE.BufferGeometryUtils: Geometry is not of type THREE.BufferGeometry.' ); return null; } const _vA = new THREE.Vector3(); const _vB = new THREE.Vector3(); const _vC = new THREE.Vector3(); const _tempA = new THREE.Vector3(); const _tempB = new THREE.Vector3(); const _tempC = new THREE.Vector3(); const _morphA = new THREE.Vector3(); const _morphB = new THREE.Vector3(); const _morphC = new THREE.Vector3(); function _calculateMorphedAttributeData( object, attribute, morphAttribute, morphTargetsRelative, a, b, c, modifiedAttributeArray ) { _vA.fromBufferAttribute( attribute, a ); _vB.fromBufferAttribute( attribute, b ); _vC.fromBufferAttribute( attribute, c ); const morphInfluences = object.morphTargetInfluences; if ( morphAttribute && morphInfluences ) { _morphA.set( 0, 0, 0 ); _morphB.set( 0, 0, 0 ); _morphC.set( 0, 0, 0 ); for ( let i = 0, il = morphAttribute.length; i < il; i ++ ) { const influence = morphInfluences[ i ]; const morph = morphAttribute[ i ]; if ( influence === 0 ) continue; _tempA.fromBufferAttribute( morph, a ); _tempB.fromBufferAttribute( morph, b ); _tempC.fromBufferAttribute( morph, c ); if ( morphTargetsRelative ) { _morphA.addScaledVector( _tempA, influence ); _morphB.addScaledVector( _tempB, influence ); _morphC.addScaledVector( _tempC, influence ); } else { _morphA.addScaledVector( _tempA.sub( _vA ), influence ); _morphB.addScaledVector( _tempB.sub( _vB ), influence ); _morphC.addScaledVector( _tempC.sub( _vC ), influence ); } } _vA.add( _morphA ); _vB.add( _morphB ); _vC.add( _morphC ); } if ( object.isSkinnedMesh ) { object.boneTransform( a, _vA ); object.boneTransform( b, _vB ); object.boneTransform( c, _vC ); } modifiedAttributeArray[ a * 3 + 0 ] = _vA.x; modifiedAttributeArray[ a * 3 + 1 ] = _vA.y; modifiedAttributeArray[ a * 3 + 2 ] = _vA.z; modifiedAttributeArray[ b * 3 + 0 ] = _vB.x; modifiedAttributeArray[ b * 3 + 1 ] = _vB.y; modifiedAttributeArray[ b * 3 + 2 ] = _vB.z; modifiedAttributeArray[ c * 3 + 0 ] = _vC.x; modifiedAttributeArray[ c * 3 + 1 ] = _vC.y; modifiedAttributeArray[ c * 3 + 2 ] = _vC.z; } const geometry = object.geometry; const material = object.material; let a, b, c; const index = geometry.index; const positionAttribute = geometry.attributes.position; const morphPosition = geometry.morphAttributes.position; const morphTargetsRelative = geometry.morphTargetsRelative; const normalAttribute = geometry.attributes.normal; const morphNormal = geometry.morphAttributes.position; const groups = geometry.groups; const drawRange = geometry.drawRange; let i, j, il, jl; let group; let start, end; const modifiedPosition = new Float32Array( positionAttribute.count * positionAttribute.itemSize ); const modifiedNormal = new Float32Array( normalAttribute.count * normalAttribute.itemSize ); if ( index !== null ) { // indexed buffer geometry if ( Array.isArray( material ) ) { for ( i = 0, il = groups.length; i < il; i ++ ) { group = groups[ i ]; start = Math.max( group.start, drawRange.start ); end = Math.min( group.start + group.count, drawRange.start + drawRange.count ); for ( j = start, jl = end; j < jl; j += 3 ) { a = index.getX( j ); b = index.getX( j + 1 ); c = index.getX( j + 2 ); _calculateMorphedAttributeData( object, positionAttribute, morphPosition, morphTargetsRelative, a, b, c, modifiedPosition ); _calculateMorphedAttributeData( object, normalAttribute, morphNormal, morphTargetsRelative, a, b, c, modifiedNormal ); } } } else { start = Math.max( 0, drawRange.start ); end = Math.min( index.count, drawRange.start + drawRange.count ); for ( i = start, il = end; i < il; i += 3 ) { a = index.getX( i ); b = index.getX( i + 1 ); c = index.getX( i + 2 ); _calculateMorphedAttributeData( object, positionAttribute, morphPosition, morphTargetsRelative, a, b, c, modifiedPosition ); _calculateMorphedAttributeData( object, normalAttribute, morphNormal, morphTargetsRelative, a, b, c, modifiedNormal ); } } } else { // non-indexed buffer geometry if ( Array.isArray( material ) ) { for ( i = 0, il = groups.length; i < il; i ++ ) { group = groups[ i ]; start = Math.max( group.start, drawRange.start ); end = Math.min( group.start + group.count, drawRange.start + drawRange.count ); for ( j = start, jl = end; j < jl; j += 3 ) { a = j; b = j + 1; c = j + 2; _calculateMorphedAttributeData( object, positionAttribute, morphPosition, morphTargetsRelative, a, b, c, modifiedPosition ); _calculateMorphedAttributeData( object, normalAttribute, morphNormal, morphTargetsRelative, a, b, c, modifiedNormal ); } } } else { start = Math.max( 0, drawRange.start ); end = Math.min( positionAttribute.count, drawRange.start + drawRange.count ); for ( i = start, il = end; i < il; i += 3 ) { a = i; b = i + 1; c = i + 2; _calculateMorphedAttributeData( object, positionAttribute, morphPosition, morphTargetsRelative, a, b, c, modifiedPosition ); _calculateMorphedAttributeData( object, normalAttribute, morphNormal, morphTargetsRelative, a, b, c, modifiedNormal ); } } } const morphedPositionAttribute = new THREE.Float32BufferAttribute( modifiedPosition, 3 ); const morphedNormalAttribute = new THREE.Float32BufferAttribute( modifiedNormal, 3 ); return { positionAttribute: positionAttribute, normalAttribute: normalAttribute, morphedPositionAttribute: morphedPositionAttribute, morphedNormalAttribute: morphedNormalAttribute }; } function mergeGroups( geometry ) { if ( geometry.groups.length === 0 ) { console.warn( 'THREE.BufferGeometryUtils.mergeGroups(): No groups are defined. Nothing to merge.' ); return geometry; } let groups = geometry.groups; // sort groups by material index groups = groups.sort( ( a, b ) => { if ( a.materialIndex !== b.materialIndex ) return a.materialIndex - b.materialIndex; return a.start - b.start; } ); // create index for non-indexed geometries if ( geometry.getIndex() === null ) { const positionAttribute = geometry.getAttribute( 'position' ); const indices = []; for ( let i = 0; i < positionAttribute.count; i += 3 ) { indices.push( i, i + 1, i + 2 ); } geometry.setIndex( indices ); } // sort index const index = geometry.getIndex(); const newIndices = []; for ( let i = 0; i < groups.length; i ++ ) { const group = groups[ i ]; const groupStart = group.start; const groupLength = groupStart + group.count; for ( let j = groupStart; j < groupLength; j ++ ) { newIndices.push( index.getX( j ) ); } } geometry.dispose(); // Required to force buffer recreation geometry.setIndex( newIndices ); // update groups indices let start = 0; for ( let i = 0; i < groups.length; i ++ ) { const group = groups[ i ]; group.start = start; start += group.count; } // merge groups let currentGroup = groups[ 0 ]; geometry.groups = [ currentGroup ]; for ( let i = 1; i < groups.length; i ++ ) { const group = groups[ i ]; if ( currentGroup.materialIndex === group.materialIndex ) { currentGroup.count += group.count; } else { currentGroup = group; geometry.groups.push( currentGroup ); } } return geometry; } THREE.BufferGeometryUtils = {}; THREE.BufferGeometryUtils.computeMikkTSpaceTangents = computeMikkTSpaceTangents; THREE.BufferGeometryUtils.computeMorphedAttributes = computeMorphedAttributes; THREE.BufferGeometryUtils.computeTangents = computeTangents; THREE.BufferGeometryUtils.deinterleaveAttribute = deinterleaveAttribute; THREE.BufferGeometryUtils.deinterleaveGeometry = deinterleaveGeometry; THREE.BufferGeometryUtils.estimateBytesUsed = estimateBytesUsed; THREE.BufferGeometryUtils.interleaveAttributes = interleaveAttributes; THREE.BufferGeometryUtils.mergeBufferAttributes = mergeBufferAttributes; THREE.BufferGeometryUtils.mergeBufferGeometries = mergeBufferGeometries; THREE.BufferGeometryUtils.mergeGroups = mergeGroups; THREE.BufferGeometryUtils.mergeVertices = mergeVertices; THREE.BufferGeometryUtils.toTrianglesDrawMode = toTrianglesDrawMode; } )(); /** * @author fernandojsg / http://fernandojsg.com * @author Don McCurdy / https://www.donmccurdy.com * @author Takahiro / https://github.com/takahirox */ //------------------------------------------------------------------------------ // Constants //------------------------------------------------------------------------------ var WEBGL_CONSTANTS = { POINTS: 0x0000, LINES: 0x0001, LINE_LOOP: 0x0002, LINE_STRIP: 0x0003, TRIANGLES: 0x0004, TRIANGLE_STRIP: 0x0005, TRIANGLE_FAN: 0x0006, UNSIGNED_BYTE: 0x1401, UNSIGNED_SHORT: 0x1403, FLOAT: 0x1406, UNSIGNED_INT: 0x1405, ARRAY_BUFFER: 0x8892, ELEMENT_ARRAY_BUFFER: 0x8893, NEAREST: 0x2600, LINEAR: 0x2601, NEAREST_MIPMAP_NEAREST: 0x2700, LINEAR_MIPMAP_NEAREST: 0x2701, NEAREST_MIPMAP_LINEAR: 0x2702, LINEAR_MIPMAP_LINEAR: 0x2703, CLAMP_TO_EDGE: 33071, MIRRORED_REPEAT: 33648, REPEAT: 10497 }; var THREE_TO_WEBGL = {}; THREE_TO_WEBGL[ THREE.NearestFilter ] = WEBGL_CONSTANTS.NEAREST; THREE_TO_WEBGL[ THREE.NearestMipmapNearestFilter ] = WEBGL_CONSTANTS.NEAREST_MIPMAP_NEAREST; THREE_TO_WEBGL[ THREE.NearestMipmapLinearFilter ] = WEBGL_CONSTANTS.NEAREST_MIPMAP_LINEAR; THREE_TO_WEBGL[ THREE.LinearFilter ] = WEBGL_CONSTANTS.LINEAR; THREE_TO_WEBGL[ THREE.LinearMipmapNearestFilter ] = WEBGL_CONSTANTS.LINEAR_MIPMAP_NEAREST; THREE_TO_WEBGL[ THREE.LinearMipmapLinearFilter ] = WEBGL_CONSTANTS.LINEAR_MIPMAP_LINEAR; THREE_TO_WEBGL[ THREE.ClampToEdgeWrapping ] = WEBGL_CONSTANTS.CLAMP_TO_EDGE; THREE_TO_WEBGL[ THREE.RepeatWrapping ] = WEBGL_CONSTANTS.REPEAT; THREE_TO_WEBGL[ THREE.MirroredRepeatWrapping ] = WEBGL_CONSTANTS.MIRRORED_REPEAT; var PATH_PROPERTIES = { scale: 'scale', position: 'translation', quaternion: 'rotation', morphTargetInfluences: 'weights' }; //------------------------------------------------------------------------------ // GLTF Exporter //------------------------------------------------------------------------------ THREE.GLTFExporter = function () {}; THREE.GLTFExporter.prototype = { constructor: THREE.GLTFExporter, /** * Parse scenes and generate GLTF output * @param {THREE.Scene or [THREE.Scenes]} input THREE.Scene or Array of THREE.Scenes * @param {Function} onDone Callback on completed * @param {Object} options options */ parse: function ( input, onDone, options ) { var DEFAULT_OPTIONS = { binary: false, trs: false, onlyVisible: true, truncateDrawRange: true, embedImages: true, maxTextureSize: Infinity, animations: [], forceIndices: false, forcePowerOfTwoTextures: false, includeCustomExtensions: false }; options = Object.assign( {}, DEFAULT_OPTIONS, options ); if ( options.animations.length > 0 ) { // Only TRS properties, and not matrices, may be targeted by animation. options.trs = true; } var outputJSON = { asset: { version: "2.0", generator: "THREE.GLTFExporter" } }; var byteOffset = 0; var buffers = []; var pending = []; var nodeMap = new Map(); var skins = []; var extensionsUsed = {}; var cachedData = { meshes: new Map(), attributes: new Map(), attributesNormalized: new Map(), materials: new Map(), textures: new Map(), images: new Map() }; var cachedCanvas; var uids = new Map(); var uid = 0; /** * Assign and return a temporal unique id for an object * especially which doesn't have .uuid * @param {Object} object * @return {Integer} */ function getUID( object ) { if ( ! uids.has( object ) ) uids.set( object, uid ++ ); return uids.get( object ); } /** * Compare two arrays * @param {Array} array1 Array 1 to compare * @param {Array} array2 Array 2 to compare * @return {Boolean} Returns true if both arrays are equal */ function equalArray( array1, array2 ) { return ( array1.length === array2.length ) && array1.every( function ( element, index ) { return element === array2[ index ]; } ); } /** * Converts a string to an ArrayBuffer. * @param {string} text * @return {ArrayBuffer} */ function stringToArrayBuffer( text ) { if ( window.TextEncoder !== undefined ) { return new TextEncoder().encode( text ).buffer; } var array = new Uint8Array( new ArrayBuffer( text.length ) ); for ( var i = 0, il = text.length; i < il; i ++ ) { var value = text.charCodeAt( i ); // Replacing multi-byte character with space(0x20). array[ i ] = value > 0xFF ? 0x20 : value; } return array.buffer; } /** * Get the min and max vectors from the given attribute * @param {THREE.BufferAttribute} attribute Attribute to find the min/max in range from start to start + count * @param {Integer} start * @param {Integer} count * @return {Object} Object containing the `min` and `max` values (As an array of attribute.itemSize components) */ function getMinMax( attribute, start, count ) { var output = { min: new Array( attribute.itemSize ).fill( Number.POSITIVE_INFINITY ), max: new Array( attribute.itemSize ).fill( Number.NEGATIVE_INFINITY ) }; for ( var i = start; i < start + count; i ++ ) { for ( var a = 0; a < attribute.itemSize; a ++ ) { var value = attribute.array[ i * attribute.itemSize + a ]; output.min[ a ] = Math.min( output.min[ a ], value ); output.max[ a ] = Math.max( output.max[ a ], value ); } } return output; } /** * Checks if image size is POT. * * @param {Image} image The image to be checked. * @returns {Boolean} Returns true if image size is POT. * */ function isPowerOfTwo( image ) { return THREE.MathUtils.isPowerOfTwo( image.width ) && THREE.MathUtils.isPowerOfTwo( image.height ); } /** * Checks if normal attribute values are normalized. * * @param {THREE.BufferAttribute} normal * @returns {Boolean} * */ function isNormalizedNormalAttribute( normal ) { if ( cachedData.attributesNormalized.has( normal ) ) { return false; } var v = new THREE.Vector3(); for ( var i = 0, il = normal.count; i < il; i ++ ) { // 0.0005 is from glTF-validator if ( Math.abs( v.fromArray( normal.array, i * 3 ).length() - 1.0 ) > 0.0005 ) return false; } return true; } /** * Creates normalized normal buffer attribute. * * @param {THREE.BufferAttribute} normal * @returns {THREE.BufferAttribute} * */ function createNormalizedNormalAttribute( normal ) { if ( cachedData.attributesNormalized.has( normal ) ) { return cachedData.attributesNormalized.get( normal ); } var attribute = normal.clone(); var v = new THREE.Vector3(); for ( var i = 0, il = attribute.count; i < il; i ++ ) { v.fromArray( attribute.array, i * 3 ); if ( v.x === 0 && v.y === 0 && v.z === 0 ) { // if values can't be normalized set (1, 0, 0) v.setX( 1.0 ); } else { v.normalize(); } v.toArray( attribute.array, i * 3 ); } cachedData.attributesNormalized.set( normal, attribute ); return attribute; } /** * Get the required size + padding for a buffer, rounded to the next 4-byte boundary. * https://github.com/KhronosGroup/glTF/tree/master/specification/2.0#data-alignment * * @param {Integer} bufferSize The size the original buffer. * @returns {Integer} new buffer size with required padding. * */ function getPaddedBufferSize( bufferSize ) { return Math.ceil( bufferSize / 4 ) * 4; } /** * Returns a buffer aligned to 4-byte boundary. * * @param {ArrayBuffer} arrayBuffer Buffer to pad * @param {Integer} paddingByte (Optional) * @returns {ArrayBuffer} The same buffer if it's already aligned to 4-byte boundary or a new buffer */ function getPaddedArrayBuffer( arrayBuffer, paddingByte ) { paddingByte = paddingByte || 0; var paddedLength = getPaddedBufferSize( arrayBuffer.byteLength ); if ( paddedLength !== arrayBuffer.byteLength ) { var array = new Uint8Array( paddedLength ); array.set( new Uint8Array( arrayBuffer ) ); if ( paddingByte !== 0 ) { for ( var i = arrayBuffer.byteLength; i < paddedLength; i ++ ) { array[ i ] = paddingByte; } } return array.buffer; } return arrayBuffer; } /** * Serializes a userData. * * @param {THREE.Object3D|THREE.Material} object * @param {Object} gltfProperty */ function serializeUserData( object, gltfProperty ) { if ( Object.keys( object.userData ).length === 0 ) { return; } try { var json = JSON.parse( JSON.stringify( object.userData ) ); if ( options.includeCustomExtensions && json.gltfExtensions ) { if ( gltfProperty.extensions === undefined ) { gltfProperty.extensions = {}; } for ( var extensionName in json.gltfExtensions ) { gltfProperty.extensions[ extensionName ] = json.gltfExtensions[ extensionName ]; extensionsUsed[ extensionName ] = true; } delete json.gltfExtensions; } if ( Object.keys( json ).length > 0 ) { gltfProperty.extras = json; } } catch ( error ) { console.warn( 'THREE.GLTFExporter: userData of \'' + object.name + '\' ' + 'won\'t be serialized because of JSON.stringify error - ' + error.message ); } } /** * Applies a texture transform, if present, to the map definition. Requires * the KHR_texture_transform extension. */ function applyTextureTransform( mapDef, texture ) { var didTransform = false; var transformDef = {}; if ( texture.offset.x !== 0 || texture.offset.y !== 0 ) { transformDef.offset = texture.offset.toArray(); didTransform = true; } if ( texture.rotation !== 0 ) { transformDef.rotation = texture.rotation; didTransform = true; } if ( texture.repeat.x !== 1 || texture.repeat.y !== 1 ) { transformDef.scale = texture.repeat.toArray(); didTransform = true; } if ( didTransform ) { mapDef.extensions = mapDef.extensions || {}; mapDef.extensions[ 'KHR_texture_transform' ] = transformDef; extensionsUsed[ 'KHR_texture_transform' ] = true; } } /** * Process a buffer to append to the default one. * @param {ArrayBuffer} buffer * @return {Integer} */ function processBuffer( buffer ) { if ( ! outputJSON.buffers ) { outputJSON.buffers = [ { byteLength: 0 } ]; } // All buffers are merged before export. buffers.push( buffer ); return 0; } /** * Process and generate a BufferView * @param {THREE.BufferAttribute} attribute * @param {number} componentType * @param {number} start * @param {number} count * @param {number} target (Optional) Target usage of the BufferView * @return {Object} */ function processBufferView( attribute, componentType, start, count, target ) { if ( ! outputJSON.bufferViews ) { outputJSON.bufferViews = []; } // Create a new dataview and dump the attribute's array into it var componentSize; if ( componentType === WEBGL_CONSTANTS.UNSIGNED_BYTE ) { componentSize = 1; } else if ( componentType === WEBGL_CONSTANTS.UNSIGNED_SHORT ) { componentSize = 2; } else { componentSize = 4; } var byteLength = getPaddedBufferSize( count * attribute.itemSize * componentSize ); var dataView = new DataView( new ArrayBuffer( byteLength ) ); var offset = 0; for ( var i = start; i < start + count; i ++ ) { for ( var a = 0; a < attribute.itemSize; a ++ ) { // @TODO Fails on InterleavedBufferAttribute, and could probably be // optimized for normal BufferAttribute. var value = attribute.array[ i * attribute.itemSize + a ]; if ( componentType === WEBGL_CONSTANTS.FLOAT ) { dataView.setFloat32( offset, value, true ); } else if ( componentType === WEBGL_CONSTANTS.UNSIGNED_INT ) { dataView.setUint32( offset, value, true ); } else if ( componentType === WEBGL_CONSTANTS.UNSIGNED_SHORT ) { dataView.setUint16( offset, value, true ); } else if ( componentType === WEBGL_CONSTANTS.UNSIGNED_BYTE ) { dataView.setUint8( offset, value ); } offset += componentSize; } } var gltfBufferView = { buffer: processBuffer( dataView.buffer ), byteOffset: byteOffset, byteLength: byteLength }; if ( target !== undefined ) gltfBufferView.target = target; if ( target === WEBGL_CONSTANTS.ARRAY_BUFFER ) { // Only define byteStride for vertex attributes. gltfBufferView.byteStride = attribute.itemSize * componentSize; } byteOffset += byteLength; outputJSON.bufferViews.push( gltfBufferView ); // @TODO Merge bufferViews where possible. var output = { id: outputJSON.bufferViews.length - 1, byteLength: 0 }; return output; } /** * Process and generate a BufferView from an image Blob. * @param {Blob} blob * @return {Promise<Integer>} */ function processBufferViewImage( blob ) { if ( ! outputJSON.bufferViews ) { outputJSON.bufferViews = []; } return new Promise( function ( resolve ) { var reader = new window.FileReader(); reader.readAsArrayBuffer( blob ); reader.onloadend = function () { var buffer = getPaddedArrayBuffer( reader.result ); var bufferView = { buffer: processBuffer( buffer ), byteOffset: byteOffset, byteLength: buffer.byteLength }; byteOffset += buffer.byteLength; outputJSON.bufferViews.push( bufferView ); resolve( outputJSON.bufferViews.length - 1 ); }; } ); } /** * Process attribute to generate an accessor * @param {THREE.BufferAttribute} attribute Attribute to process * @param {THREE.BufferGeometry} geometry (Optional) Geometry used for truncated draw range * @param {Integer} start (Optional) * @param {Integer} count (Optional) * @return {Integer} Index of the processed accessor on the "accessors" array */ function processAccessor( attribute, geometry, start, count ) { var types = { 1: 'SCALAR', 2: 'VEC2', 3: 'VEC3', 4: 'VEC4', 16: 'MAT4' }; var componentType; // Detect the component type of the attribute array (float, uint or ushort) if ( attribute.array.constructor === Float32Array ) { componentType = WEBGL_CONSTANTS.FLOAT; } else if ( attribute.array.constructor === Uint32Array ) { componentType = WEBGL_CONSTANTS.UNSIGNED_INT; } else if ( attribute.array.constructor === Uint16Array ) { componentType = WEBGL_CONSTANTS.UNSIGNED_SHORT; } else if ( attribute.array.constructor === Uint8Array ) { componentType = WEBGL_CONSTANTS.UNSIGNED_BYTE; } else { throw new Error( 'THREE.GLTFExporter: Unsupported bufferAttribute component type.' ); } if ( start === undefined ) start = 0; if ( count === undefined ) count = attribute.count; // @TODO Indexed buffer geometry with drawRange not supported yet if ( options.truncateDrawRange && geometry !== undefined && geometry.index === null ) { var end = start + count; var end2 = geometry.drawRange.count === Infinity ? attribute.count : geometry.drawRange.start + geometry.drawRange.count; start = Math.max( start, geometry.drawRange.start ); count = Math.min( end, end2 ) - start; if ( count < 0 ) count = 0; } // Skip creating an accessor if the attribute doesn't have data to export if ( count === 0 ) { return null; } var minMax = getMinMax( attribute, start, count ); var bufferViewTarget; // If geometry isn't provided, don't infer the target usage of the bufferView. For // animation samplers, target must not be set. if ( geometry !== undefined ) { bufferViewTarget = attribute === geometry.index ? WEBGL_CONSTANTS.ELEMENT_ARRAY_BUFFER : WEBGL_CONSTANTS.ARRAY_BUFFER; } var bufferView = processBufferView( attribute, componentType, start, count, bufferViewTarget ); var gltfAccessor = { bufferView: bufferView.id, byteOffset: bufferView.byteOffset, componentType: componentType, count: count, max: minMax.max, min: minMax.min, type: types[ attribute.itemSize ] }; if ( ! outputJSON.accessors ) { outputJSON.accessors = []; } outputJSON.accessors.push( gltfAccessor ); return outputJSON.accessors.length - 1; } /** * Process image * @param {Image} image to process * @param {Integer} format of the image (e.g. THREE.RGBFormat, THREE.RGBAFormat etc) * @param {Boolean} flipY before writing out the image * @return {Integer} Index of the processed texture in the "images" array */ function processImage( image, format, flipY ) { if ( ! cachedData.images.has( image ) ) { cachedData.images.set( image, {} ); } var cachedImages = cachedData.images.get( image ); var mimeType = format === THREE.RGBAFormat ? 'image/png' : 'image/jpeg'; var key = mimeType + ":flipY/" + flipY.toString(); if ( cachedImages[ key ] !== undefined ) { return cachedImages[ key ]; } if ( ! outputJSON.images ) { outputJSON.images = []; } var gltfImage = { mimeType: mimeType }; if ( options.embedImages ) { var canvas = cachedCanvas = cachedCanvas || document.createElement( 'canvas' ); canvas.width = Math.min( image.width, options.maxTextureSize ); canvas.height = Math.min( image.height, options.maxTextureSize ); if ( options.forcePowerOfTwoTextures && ! isPowerOfTwo( canvas ) ) { console.warn( 'GLTFExporter: Resized non-power-of-two image.', image ); canvas.width = THREE.MathUtils.floorPowerOfTwo( canvas.width ); canvas.height = THREE.MathUtils.floorPowerOfTwo( canvas.height ); } var ctx = canvas.getContext( '2d' ); if ( flipY === true ) { ctx.translate( 0, canvas.height ); ctx.scale( 1, - 1 ); } ctx.drawImage( image, 0, 0, canvas.width, canvas.height ); if ( options.binary === true ) { pending.push( new Promise( function ( resolve ) { canvas.toBlob( function ( blob ) { processBufferViewImage( blob ).then( function ( bufferViewIndex ) { gltfImage.bufferView = bufferViewIndex; resolve(); } ); }, mimeType ); } ) ); } else { gltfImage.uri = canvas.toDataURL( mimeType ); } } else { gltfImage.uri = image.src; } outputJSON.images.push( gltfImage ); var index = outputJSON.images.length - 1; cachedImages[ key ] = index; return index; } /** * Process sampler * @param {Texture} map Texture to process * @return {Integer} Index of the processed texture in the "samplers" array */ function processSampler( map ) { if ( ! outputJSON.samplers ) { outputJSON.samplers = []; } var gltfSampler = { magFilter: THREE_TO_WEBGL[ map.magFilter ], minFilter: THREE_TO_WEBGL[ map.minFilter ], wrapS: THREE_TO_WEBGL[ map.wrapS ], wrapT: THREE_TO_WEBGL[ map.wrapT ] }; outputJSON.samplers.push( gltfSampler ); return outputJSON.samplers.length - 1; } /** * Process texture * @param {Texture} map Map to process * @return {Integer} Index of the processed texture in the "textures" array */ function processTexture( map ) { if ( cachedData.textures.has( map ) ) { return cachedData.textures.get( map ); } if ( ! outputJSON.textures ) { outputJSON.textures = []; } var gltfTexture = { sampler: processSampler( map ), source: processImage( map.image, map.format, map.flipY ) }; if ( map.name ) { gltfTexture.name = map.name; } outputJSON.textures.push( gltfTexture ); var index = outputJSON.textures.length - 1; cachedData.textures.set( map, index ); return index; } /** * Process material * @param {THREE.Material} material Material to process * @return {Integer} Index of the processed material in the "materials" array */ function processMaterial( material ) { if ( cachedData.materials.has( material ) ) { return cachedData.materials.get( material ); } if ( ! outputJSON.materials ) { outputJSON.materials = []; } if ( material.isShaderMaterial && ! material.isGLTFSpecularGlossinessMaterial ) { console.warn( 'GLTFExporter: THREE.ShaderMaterial not supported.' ); return null; } // @QUESTION Should we avoid including any attribute that has the default value? var gltfMaterial = { pbrMetallicRoughness: {} }; if ( material.isMeshBasicMaterial ) { gltfMaterial.extensions = { KHR_materials_unlit: {} }; extensionsUsed[ 'KHR_materials_unlit' ] = true; } else if ( material.isGLTFSpecularGlossinessMaterial ) { gltfMaterial.extensions = { KHR_materials_pbrSpecularGlossiness: {} }; extensionsUsed[ 'KHR_materials_pbrSpecularGlossiness' ] = true; } else if ( ! material.isMeshStandardMaterial ) { console.warn( 'GLTFExporter: Use MeshStandardMaterial or MeshBasicMaterial for best results.' ); } // pbrMetallicRoughness.baseColorFactor var color = material.color.toArray().concat( [ material.opacity ] ); if ( ! equalArray( color, [ 1, 1, 1, 1 ] ) ) { gltfMaterial.pbrMetallicRoughness.baseColorFactor = color; } if ( material.isMeshStandardMaterial ) {