echogarden
Version:
An easy-to-use speech toolset. Includes tools for synthesis, recognition, alignment, speech translation, language detection, source separation and more.
863 lines • 105 kB
JavaScript
import chalk from 'chalk';
import { Logger } from '../utilities/Logger.js';
import { computeMelSpectrogramUsingFilterbanks } from '../dsp/MelSpectrogram.js';
import { clip, getIntegerRange, getTopKIndexes, splitFloat32Array, yieldToEventLoop } from '../utilities/Utilities.js';
import { indexOfMax, logOfVector, logSumExp, meanOfVector, medianOfVector, softmax, sumAndSumOfSquaresOfVector } from '../math/VectorMath.js';
import { alignDTWWindowed } from '../alignment/DTWSequenceAlignmentWindowed.js';
import { extendDeep } from '../utilities/ObjectUtilities.js';
import { getRawAudioDuration, sliceRawAudio } from '../audio/AudioUtilities.js';
import { readFileAsUtf8 } from '../utilities/FileSystem.js';
import { logLevelGreaterOrEqualTo } from '../api/API.js';
import { formatLanguageCodeWithName, getShortLanguageCode, languageCodeToName } from '../utilities/Locale.js';
import { loadPackage } from '../utilities/PackageManager.js';
import { XorShift32PRNG } from '../utilities/RandomGenerator.js';
import { detectSpeechLanguageByParts } from '../api/SpeechLanguageDetection.js';
import { includesPunctuation, isWhitespace, splitToWords } from '../nlp/Segmentation.js';
import { medianOf5Filter } from '../math/MedianFilter.js';
import { getDeflateCompressionMetricsForString } from '../utilities/Compression.js';
import { dmlProviderAvailable, getOnnxSessionOptions, makeOnnxLikeFloat32Tensor } from '../utilities/OnnxUtilities.js';
import { murmurHash3_int32Input } from '../utilities/Hashing.js';
import { containsInvalidCodepoint, getTokenRepetitionScore } from '../utilities/StringUtilities.js';
import { joinPath } from '../utilities/PathUtilities.js';
import { Timer } from '../utilities/Timer.js';
export async function recognize(sourceRawAudio, modelName, modelDir, task, sourceLanguage, options, onPart) {
options = extendDeep(defaultWhisperOptions, options);
if (sourceRawAudio.sampleRate !== 16000) {
throw new Error('Source audio must have a sample rate of 16000 Hz');
}
sourceLanguage = getShortLanguageCode(sourceLanguage);
if (!(sourceLanguage in languageIdLookup)) {
throw new Error(`The language ${formatLanguageCodeWithName(sourceLanguage)} is not supported by the Whisper engine.`);
}
if (isEnglishOnlyModel(modelName) && sourceLanguage !== 'en') {
throw new Error(`The model '${modelName}' can only be used with English inputs. However, the given source language was ${languageCodeToName(sourceLanguage)}.`);
}
if (modelName === 'large-v3-turbo' && task === 'translate') {
throw new Error(`The 'large-v3-turbo' model doesn't support translation tasks.`);
}
if (options.temperature && options.temperature < 0) {
throw new Error(`Temperature can't be negative`);
}
// Workaround issue with large-v3-turbo that produces invalid results when a prompt is passed to it.
// Always disable autoprompting for that model.
if (options.autoPromptParts && modelName === 'large-v3-turbo') {
options.autoPromptParts = false;
}
// Select encoder ONNX provider
const encoderProviders = options.encoderProvider ? [options.encoderProvider] : getDefaultEncoderProvidersForModel(modelName);
// Select decoder ONNX provider
const decoderProviders = options.decoderProvider ? [options.decoderProvider] : getDefaultDecoderProvidersForModel(modelName);
const seed = options.seed;
const whisper = new Whisper(modelName, modelDir, encoderProviders, decoderProviders, seed);
const result = await whisper.recognize(sourceRawAudio, task, sourceLanguage, options, undefined, onPart);
return result;
}
export async function align(sourceRawAudio, transcript, modelName, modelDir, sourceLanguage, options) {
options = extendDeep(defaultWhisperAlignmentOptions, options);
if (sourceRawAudio.sampleRate !== 16000) {
throw new Error('Source audio must have a sample rate of 16000 Hz');
}
sourceLanguage = getShortLanguageCode(sourceLanguage);
if (!(sourceLanguage in languageIdLookup)) {
throw new Error(`The language ${formatLanguageCodeWithName(sourceLanguage)} is not supported by the Whisper engine.`);
}
if (isEnglishOnlyModel(modelName) && sourceLanguage !== 'en') {
throw new Error(`The model '${modelName}' can only be used with English inputs. However, the given source language was ${languageCodeToName(sourceLanguage)}.`);
}
// Select encoder ONNX provider
const encoderProviders = options.encoderProvider ? [options.encoderProvider] : getDefaultEncoderProvidersForModel(modelName);
// Select decoder ONNX provider
const decoderProviders = options.decoderProvider ? [options.decoderProvider] : getDefaultDecoderProvidersForModel(modelName);
const whisper = new Whisper(modelName, modelDir, encoderProviders, decoderProviders);
const timeline = await whisper.align(sourceRawAudio, transcript, sourceLanguage, 'transcribe', options);
return timeline;
}
export async function alignEnglishTranslation(sourceRawAudio, translatedTranscript, modelName, modelDir, sourceLanguage, options) {
options = extendDeep(defaultWhisperAlignmentOptions, options);
if (sourceRawAudio.sampleRate !== 16000) {
throw new Error('Source audio must have a sample rate of 16000 Hz');
}
sourceLanguage = getShortLanguageCode(sourceLanguage);
if (!(sourceLanguage in languageIdLookup)) {
throw new Error(`The source language ${formatLanguageCodeWithName(sourceLanguage)} is not supported by the Whisper engine.`);
}
if (modelName === 'large-v3-turbo') {
throw new Error(`The 'large-v3-turbo' model doesn't support translation tasks, so cannot be used for translation alignment.`);
}
if (isEnglishOnlyModel(modelName)) {
throw new Error(`Translation alignment can only be done with multilingual models.`);
}
// Select encoder ONNX provider
const encoderProviders = options.encoderProvider ? [options.encoderProvider] : getDefaultEncoderProvidersForModel(modelName);
// Select decoder ONNX provider
const decoderProviders = options.decoderProvider ? [options.decoderProvider] : getDefaultDecoderProvidersForModel(modelName);
const whisper = new Whisper(modelName, modelDir, encoderProviders, decoderProviders);
const timeline = await whisper.align(sourceRawAudio, translatedTranscript, sourceLanguage, 'translate', options);
return timeline;
}
export async function detectLanguage(sourceRawAudio, modelName, modelDir, options) {
options = extendDeep(defaultWhisperLanguageDetectionOptions, options);
if (sourceRawAudio.sampleRate !== 16000) {
throw new Error('Source audio must have a sample rate of 16000 Hz');
}
if (!isMultilingualModel(modelName)) {
throw new Error(`Language detection is only supported with multilingual models.`);
}
if (options.temperature < 0) {
throw new Error(`Temperature cannot be negative`);
}
// Select encoder ONNX provider
const encoderProviders = options.encoderProvider ? [options.encoderProvider] : getDefaultEncoderProvidersForModel(modelName);
// Select decoder ONNX provider
const decoderProviders = options.decoderProvider ? [options.decoderProvider] : [];
const whisper = new Whisper(modelName, modelDir, encoderProviders, decoderProviders);
async function detectLanguageForPart(partAudio) {
const audioFeatures = await whisper.encodeAudio(partAudio);
const partResults = await whisper.detectLanguage(audioFeatures, options.temperature);
return partResults;
}
const results = await detectSpeechLanguageByParts(sourceRawAudio, detectLanguageForPart);
results.sort((entry1, entry2) => entry2.probability - entry1.probability);
return results;
}
export async function detectVoiceActivity(sourceRawAudio, modelName, modelDir, options) {
options = extendDeep(defaultWhisperVADOptions, options);
if (sourceRawAudio.sampleRate !== 16000) {
throw new Error('Source audio must have a sample rate of 16000 Hz');
}
if (options.temperature < 0) {
throw new Error(`Temperature cannot be negative`);
}
const audioSamples = sourceRawAudio.audioChannels[0];
const partDuration = 5;
const maxSamplesCountForPart = sourceRawAudio.sampleRate * partDuration;
// Select encoder ONNX provider
const encoderProviders = options.encoderProvider ? [options.encoderProvider] : getDefaultEncoderProvidersForModel(modelName);
// Select decoder ONNX provider
const decoderProviders = options.decoderProvider ? [options.decoderProvider] : [];
const whisper = new Whisper(modelName, modelDir, encoderProviders, decoderProviders);
const partProbabilities = [];
for (let sampleOffset = 0; sampleOffset < audioSamples.length; sampleOffset += maxSamplesCountForPart) {
const partSamples = sliceRawAudio(sourceRawAudio, sampleOffset, sampleOffset + maxSamplesCountForPart);
const samplesCountForPart = partSamples.audioChannels[0].length;
const startTime = sampleOffset / sourceRawAudio.sampleRate;
const endTime = (sampleOffset + samplesCountForPart) / sourceRawAudio.sampleRate;
const encodedPartSamples = await whisper.encodeAudio(partSamples);
const probabilityForPart = await whisper.detectVoiceActivity(encodedPartSamples, options.temperature);
partProbabilities.push({
type: 'segment',
text: '',
startTime,
endTime,
confidence: probabilityForPart,
});
}
return { partProbabilities };
}
export class Whisper {
modelName;
modelDir;
encoderExecutionProviders;
decoderExecutionProviders;
isMultiligualModel;
audioEncoder;
textDecoder;
tiktoken;
tokenConfig;
randomGen;
constructor(modelName, modelDir, encoderExecutionProviders, decoderExecutionProviders, prngSeed = 1234) {
this.modelName = modelName;
this.modelDir = modelDir;
this.encoderExecutionProviders = encoderExecutionProviders;
this.decoderExecutionProviders = decoderExecutionProviders;
this.isMultiligualModel = isMultilingualModel(this.modelName);
if (this.isMultiligualModel) {
this.tokenConfig = {
endOfTextToken: 50257,
startOfTextToken: 50258,
languageTokensStart: 50259,
languageTokensEnd: 50358,
translateTaskToken: 50358,
transcribeTaskToken: 50359,
startOfPromptToken: 50361,
nonSpeechToken: 50362,
noTimestampsToken: 50363,
timestampTokensStart: 50364,
timestampTokensEnd: 50364 + 1501,
};
}
else {
this.tokenConfig = {
endOfTextToken: 50256,
startOfTextToken: 50257,
languageTokensStart: 50258,
languageTokensEnd: 50358,
translateTaskToken: 50358,
transcribeTaskToken: 50359,
startOfPromptToken: 50360,
nonSpeechToken: 50361,
noTimestampsToken: 50362,
timestampTokensStart: 50363,
timestampTokensEnd: 50363 + 1501,
};
}
this.randomGen = new XorShift32PRNG(murmurHash3_int32Input(prngSeed));
}
async recognize(rawAudio, task, language, options, logitFilter, onPart) {
await this.initializeIfNeeded();
const logger = new Logger();
options = extendDeep(defaultWhisperOptions, options);
options.model = this.modelName;
if (!options.timestampAccuracy) {
options.timestampAccuracy = this.defaultTimestampAccuracy;
}
if (options.maxTokensPerPart > largestMaximumTokensPerPart) {
//throw new Error(`The number of tokens per part cannot be greater than ${largestMaximumTokensPerPart}`)
options.maxTokensPerPart = largestMaximumTokensPerPart;
}
const audioSamples = rawAudio.audioChannels[0];
const sampleRate = rawAudio.sampleRate;
const prompt = options.prompt;
const decodeTimestampTokens = options.decodeTimestampTokens;
const maxAudioSamplesPerPart = sampleRate * 30;
let previousPartTextTokens = [];
let timeline = [];
let allDecodedTokens = [];
let wrappedLogitFilter;
if (logitFilter) {
wrappedLogitFilter = (logits, partDecodedTokens, isFirstPart, isFinalPart) => {
return logitFilter(logits, [...allDecodedTokens, ...partDecodedTokens], isFirstPart, isFinalPart);
};
}
for (let audioOffset = 0; audioOffset < audioSamples.length;) {
const segmentStartTime = audioOffset / sampleRate;
await logger.startAsync(`\nPrepare audio part at time position ${segmentStartTime.toFixed(2)}`, undefined, chalk.magentaBright);
const audioPartSamples = audioSamples.slice(audioOffset, audioOffset + maxAudioSamplesPerPart);
const audioPartRawAudio = { audioChannels: [audioPartSamples], sampleRate };
const audioPartDuration = getRawAudioDuration(audioPartRawAudio);
logger.end();
const audioPartFeatures = await this.encodeAudio(audioPartRawAudio);
const isFirstPart = audioOffset === 0;
const isFinalPart = audioOffset + maxAudioSamplesPerPart >= audioSamples.length;
let initialTokens = [];
if (isFirstPart && prompt) {
let promptTokens = this.textToTokens(prompt);
if (promptTokens.length > largestMaximumTokensPerPart) {
promptTokens = promptTokens.slice(promptTokens.length - largestMaximumTokensPerPart);
}
initialTokens = [this.tokenConfig.startOfPromptToken, ...promptTokens];
}
else if (options.autoPromptParts && previousPartTextTokens.length > 0) {
initialTokens = [this.tokenConfig.startOfPromptToken, ...previousPartTextTokens];
}
initialTokens = [...initialTokens, ...this.getTextStartTokens(language, task, !decodeTimestampTokens)];
//logger.log(`Initial tokens count: ${initialTokens.length}`)
logger.end();
let { decodedTokens: partTokens, decodedTokensConfidence: partTokensConfidence, decodedTokensCrossAttentionQKs: partTokensCrossAttentionQKs, decodedTokensDecodingTime: partTokensDecodingTime, decodedTokensInferenceTime: partTokensInferenceTime, decodedTokensOverheadTime: partTokensOverheadTime, } = await this.decodeTokens(audioPartFeatures, initialTokens, audioPartDuration, isFirstPart, isFinalPart, options, wrappedLogitFilter);
const lastToken = partTokens[partTokens.length - 1];
const lastTokenIsTimestamp = this.isTimestampToken(lastToken);
let audioEndOffset;
if (!isFinalPart && lastTokenIsTimestamp) {
const timePosition = this.timestampTokenToSeconds(lastToken);
audioEndOffset = audioOffset + Math.floor(timePosition * sampleRate);
}
else {
audioEndOffset = Math.min(audioOffset + maxAudioSamplesPerPart, audioSamples.length);
}
const segmentEndTime = audioEndOffset / sampleRate;
const segmentFrameCount = this.secondsRangeToFrameCount(segmentStartTime, segmentEndTime);
await logger.startAsync(`Extract timeline for part (timestamp accuracy: ${options.timestampAccuracy})`);
if (partTokens.length !== partTokensCrossAttentionQKs.length) {
throw new Error('Unexpected: partTokens.length !== partCrossAttentionQKs.length');
}
// Prepare tokens
partTokens = partTokens.slice(initialTokens.length);
partTokensConfidence = partTokensConfidence.slice(initialTokens.length);
partTokensCrossAttentionQKs = partTokensCrossAttentionQKs.slice(initialTokens.length);
// Find alignment path
let alignmentHeads;
if (options.timestampAccuracy === 'medium' || options.model === 'large-v3-turbo') {
alignmentHeads = this.alignmentHeadIndexes;
}
else if (options.timestampAccuracy === 'high') {
alignmentHeads = undefined;
}
else {
throw new Error(`Unsupported timestamp accuracy '${options.timestampAccuracy}', can only be 'medium' or 'high'.`);
}
const alignmentPath = await this.findAlignmentPathFromQKs(partTokensCrossAttentionQKs, partTokens, 0, segmentFrameCount, alignmentHeads);
// Generate timeline from alignment path
const partTimeline = await this.getTokenTimelineFromAlignmentPath(alignmentPath, partTokens, segmentStartTime, segmentEndTime, partTokensConfidence);
if (onPart) {
const partWordTimeline = this.tokenTimelineToWordTimeline(partTimeline, language);
const partTranscript = this.tokensToText(partTokens);
onPart(partTranscript, partTimeline, partWordTimeline);
}
// Add tokens to output
allDecodedTokens.push(...partTokens);
timeline.push(...partTimeline);
// Determine compression ratio for recognized text (normalized to lowercase) of this part
const compressionRatioForPart = (await getDeflateCompressionMetricsForString(this.tokensToText(partTokens).toLocaleLowerCase())).ratio;
// If the recognized text isn't too repetitive
if (compressionRatioForPart < options.repetitionThreshold) {
// Set current part tokens as the previous part text tokens
previousPartTextTokens = partTokens.filter(token => this.isTextToken(token));
}
else {
// Otherwise, set previous part tokens to an empty array
previousPartTextTokens = [];
}
audioOffset = audioEndOffset;
logger.end();
if (logLevelGreaterOrEqualTo('trace')) {
const promptDecodingTime = partTokensDecodingTime[0];
const medianTokenDecodingTime = medianOfVector(partTokensDecodingTime.slice(1));
const medianTokenInferenceTime = medianOfVector(partTokensInferenceTime.slice(1));
const medianOverheadTime = medianOfVector(partTokensOverheadTime.slice(1));
logger.log(`${chalk.blueBright('Context')}: ${initialTokens.length + partTokens.length} tokens (${initialTokens.length} prompt, ${partTokens.length} decoded)\n${chalk.blueBright('Prompt decode time')}: ${promptDecodingTime.toFixed(1)}ms\n${chalk.blueBright('Median token decode time')}: ${medianTokenDecodingTime.toFixed(1)}ms (${medianTokenInferenceTime.toFixed(1)}ms inference, ${medianOverheadTime.toFixed(2)}ms overhead)`, 'trace');
}
}
// Convert token timeline to word timeline
timeline = this.tokenTimelineToWordTimeline(timeline, language);
// Convert tokens to transcript
const transcript = this.tokensToText(allDecodedTokens).trim();
logger.end();
return { transcript, timeline, allDecodedTokens };
}
async align(rawAudio, transcript, sourceLanguage, task, whisperAlignmentOptions) {
await this.initializeTokenizerIfNeeded();
whisperAlignmentOptions = extendDeep(defaultWhisperAlignmentOptions, whisperAlignmentOptions);
if (!whisperAlignmentOptions.timestampAccuracy) {
whisperAlignmentOptions.timestampAccuracy = this.defaultTimestampAccuracy;
}
if (whisperAlignmentOptions.maxTokensPerPart > largestMaximumTokensPerPart) {
//throw new Error(`The number of tokens per part cannot be greater than ${largestMaximumTokensPerPart}`)
whisperAlignmentOptions.maxTokensPerPart = largestMaximumTokensPerPart;
}
const targetLanguage = task === 'transcribe' ? sourceLanguage : 'en';
let simplifiedTranscript = '';
{
const words = (await splitToWords(transcript, targetLanguage)).nonPunctuationWords;
simplifiedTranscript = words.join(' ');
}
// Tokenize the transcript
const simplifiedTranscriptTokens = this.textToTokens(simplifiedTranscript);
// Initialize custom logit filter that allows only the transcript tokens to be decoded
// in order.
const endOfTextToken = this.tokenConfig.endOfTextToken;
const logitFilter = (logits, decodedTokens, isFirstPart, isFinalPart) => {
const decodedTextTokens = decodedTokens.filter(token => this.isTextToken(token));
const nextTokenToDecode = simplifiedTranscriptTokens[decodedTextTokens.length] ?? endOfTextToken;
const newLogits = logits.map((logit, index) => {
if (index === nextTokenToDecode) {
return logit;
}
// If it's the final part, the ent-of-text token logit is set to -Infinity.
// This will force to force all transcript tokens to be decoded even if the model doesn't
// recognize them.
if (!isFinalPart && index === endOfTextToken) {
return logit;
}
return -Infinity;
});
return newLogits;
};
// Set options for alignment
const options = {
model: this.modelName,
temperature: 0.0,
prompt: undefined,
topCandidateCount: 1,
punctuationThreshold: Infinity,
autoPromptParts: false,
maxTokensPerPart: whisperAlignmentOptions.maxTokensPerPart,
suppressRepetition: false,
repetitionThreshold: Infinity,
decodeTimestampTokens: true,
endTokenThreshold: whisperAlignmentOptions.endTokenThreshold,
includeEndTokenInCandidates: false,
timestampAccuracy: whisperAlignmentOptions.timestampAccuracy,
encoderProvider: whisperAlignmentOptions.encoderProvider,
decoderProvider: whisperAlignmentOptions.decoderProvider,
seed: undefined,
};
// Recognize
const { timeline, allDecodedTokens } = await this.recognize(rawAudio, task, sourceLanguage, options, logitFilter);
{
// If not all tokens were decoded, add the remaining ones to the timeline
const lastKnownWordStartTime = timeline.length > 0 ? timeline[timeline.length - 1].startTime : 0;
const allDecodedTextTokens = allDecodedTokens.filter(token => this.isTextToken(token));
while (allDecodedTextTokens.length < simplifiedTranscriptTokens.length) {
const token = simplifiedTranscriptTokens[allDecodedTextTokens.length];
const tokenText = this.tokenToText(token);
allDecodedTextTokens.push(token);
const newTokenEntry = {
type: 'token',
text: tokenText,
startTime: lastKnownWordStartTime,
endTime: lastKnownWordStartTime,
id: token,
confidence: 0,
};
if (tokenText.startsWith(' ') || timeline.length === 0) {
timeline.push({
type: 'word',
text: tokenText.trim(),
startTime: lastKnownWordStartTime,
endTime: lastKnownWordStartTime,
timeline: [newTokenEntry],
confidence: 0,
});
}
else {
const lastWordEntry = timeline[timeline.length - 1];
lastWordEntry.timeline.push(newTokenEntry);
lastWordEntry.text += tokenText;
}
}
}
return timeline;
}
async detectLanguage(audioFeatures, temperature) {
if (!this.isMultiligualModel) {
throw new Error('Language detection is only supported with multilingual models');
}
await this.initializeDecoderSessionIfNeeded();
// Prepare and run decoder
const logger = new Logger();
await logger.startAsync('Detect language with Whisper model');
const sotToken = this.tokenConfig.startOfTextToken;
const initialTokens = [sotToken];
const offset = 0;
const Onnx = await import('onnxruntime-node');
const initialKvDimensions = this.getKvDimensions(1, initialTokens.length);
const kvCacheTensor = new Onnx.Tensor('float32', new Float32Array(initialKvDimensions[0] * initialKvDimensions[1] * initialKvDimensions[2] * initialKvDimensions[3]), initialKvDimensions);
const tokensTensor = new Onnx.Tensor('int64', new BigInt64Array(initialTokens.map(token => BigInt(token))), [1, initialTokens.length]);
const offsetTensor = new Onnx.Tensor('int64', new BigInt64Array([BigInt(offset)]), []);
const decoderInputs = {
tokens: tokensTensor,
audio_features: audioFeatures,
kv_cache: kvCacheTensor,
offset: offsetTensor
};
const decoderOutputs = await this.textDecoder.run(decoderInputs);
const logitsBuffer = decoderOutputs['logits'].data;
const tokenConfig = this.tokenConfig;
const languageTokensLogits = Array.from(logitsBuffer.slice(tokenConfig.languageTokensStart, tokenConfig.languageTokensEnd));
const languageTokensProbabilities = softmax(languageTokensLogits, temperature);
const results = [];
for (const language in languageIdLookup) {
const langId = languageIdLookup[language];
const probability = languageTokensProbabilities[langId];
results.push({
language,
languageName: languageCodeToName(language),
probability
});
}
logger.end();
return results;
}
async detectVoiceActivity(audioFeatures, temperature) {
await this.initializeDecoderSessionIfNeeded();
// Prepare and run decoder
const logger = new Logger();
await logger.startAsync('Detect voice activity with Whisper model');
const sotToken = this.tokenConfig.startOfTextToken;
const initialTokens = [sotToken];
const offset = 0;
const Onnx = await import('onnxruntime-node');
const initialKvDimensions = this.getKvDimensions(1, initialTokens.length);
const kvCacheTensor = new Onnx.Tensor('float32', new Float32Array(initialKvDimensions[0] * initialKvDimensions[1] * initialKvDimensions[2] * initialKvDimensions[3]), initialKvDimensions);
const tokensTensor = new Onnx.Tensor('int64', new BigInt64Array(initialTokens.map(token => BigInt(token))), [1, initialTokens.length]);
const offsetTensor = new Onnx.Tensor('int64', new BigInt64Array([BigInt(offset)]), []);
const decoderInputs = {
tokens: tokensTensor,
audio_features: audioFeatures,
kv_cache: kvCacheTensor,
offset: offsetTensor
};
const decoderOutputs = await this.textDecoder.run(decoderInputs);
const logitsBuffer = decoderOutputs['logits'].data;
const tokenConfig = this.tokenConfig;
const logits = Array.from(logitsBuffer);
const probabilities = softmax(logits, temperature);
const noSpeechProbability = probabilities[tokenConfig.nonSpeechToken];
return 1.0 - noSpeechProbability;
}
// Decode tokens using the decoder model
async decodeTokens(audioFeatures, initialTokens, audioDuration, isFirstPart, isFinalPart, options, logitFilter) {
// Initialize
await this.initializeTokenizerIfNeeded();
await this.initializeDecoderSessionIfNeeded();
const logger = new Logger();
await logger.startAsync('Decode text tokens with Whisper decoder model');
options = extendDeep(defaultWhisperOptions, options);
const Onnx = await import('onnxruntime-node');
// Get token information
const endOfTextToken = this.tokenConfig.endOfTextToken;
const timestampTokensStart = this.tokenConfig.timestampTokensStart;
const suppressedTextTokens = this.getSuppressedTextTokens();
const suppressedMetadataTokens = this.getSuppressedMetadataTokens();
const allowedPunctuationMarks = this.getAllowedPunctuationMarks();
const spaceToken = this.textToTokens(' ')[0];
// Initialize variables for decoding loop
let decodedTokens = initialTokens.slice();
const initialKvDimensions = this.getKvDimensions(1, decodedTokens.length);
let kvCacheTensor = new Onnx.Tensor('float32', new Float32Array(initialKvDimensions[0] * initialKvDimensions[1] * initialKvDimensions[2] * initialKvDimensions[3]), initialKvDimensions);
let decodedTokensTimestampLogits = [];
let decodedTokensConfidence = [];
let decodedTokensCrossAttentionQKs = [];
for (let i = 0; i < decodedTokens.length; i++) {
decodedTokensTimestampLogits.push(new Array(1501)); // Should the length be 1500 instead?
decodedTokensConfidence.push(1.0);
decodedTokensCrossAttentionQKs.push(undefined);
}
let lastTimestampTokenIndex = -1;
let timestampTokenSeenCount = 0;
let bufferedTokensToPrint = [];
// Define method to add a token to output
function addToken(tokenToAdd, timestampLogits, confidence, crossAttentionQKs) {
decodedTokens.push(tokenToAdd);
decodedTokensTimestampLogits.push(timestampLogits);
decodedTokensConfidence.push(confidence);
decodedTokensCrossAttentionQKs.push(crossAttentionQKs);
}
const maxTokensPerPart = Math.min(options.maxTokensPerPart, largestMaximumTokensPerPart);
let decodedTokensInferenceTime = [];
let decodedTokensDecodingTime = [];
const tokenDecodingTimeTimer = new Timer();
// Start decoding loop
for (let decodedTokenCount = 0; decodedTokenCount < maxTokensPerPart; decodedTokenCount++) {
if (decodedTokenCount > 0) {
decodedTokensDecodingTime.push(tokenDecodingTimeTimer.getElapsedTimeAndRestart());
}
const isInitialState = decodedTokens.length === initialTokens.length;
const atLeastOneTextTokenDecoded = decodedTokens.slice(initialTokens.length).some(token => this.isTextToken(token));
// If not in initial state, reshape KV Cache tensor to accomodate a new output token
if (!isInitialState) {
const dims = kvCacheTensor.dims;
const currentKvCacheGroups = splitFloat32Array(kvCacheTensor.data, dims[2] * dims[3]);
const reshapedKvCacheTensor = new Onnx.Tensor('float32', new Float32Array(dims[0] * dims[1] * (decodedTokens.length) * dims[3]), [dims[0], dims[1], decodedTokens.length, dims[3]]);
const reshapedKvCacheGroups = splitFloat32Array(reshapedKvCacheTensor.data, decodedTokens.length * dims[3]);
for (let i = 0; i < dims[0]; i++) {
reshapedKvCacheGroups[i].set(currentKvCacheGroups[i]);
}
kvCacheTensor = reshapedKvCacheTensor;
}
// Prepare values for decoder
const tokensToDecode = isInitialState ? decodedTokens : [decodedTokens[decodedTokens.length - 1]];
const offset = isInitialState ? 0 : decodedTokens.length;
const tokensTensor = new Onnx.Tensor('int64', new BigInt64Array(tokensToDecode.map(token => BigInt(token))), [1, tokensToDecode.length]);
const offsetTensor = new Onnx.Tensor('int64', new BigInt64Array([BigInt(offset)]), []);
const decoderInputs = {
tokens: tokensTensor,
audio_features: audioFeatures,
kv_cache: kvCacheTensor,
offset: offsetTensor
};
//// Infer with ONNX decoder model
const tokenInferenceTimeTimer = new Timer();
const decoderOutputs = await this.textDecoder.run(decoderInputs);
decodedTokensInferenceTime.push(tokenInferenceTimeTimer.elapsedTime);
// Extract decoder model results
const logitsBuffer = decoderOutputs['logits'].data;
kvCacheTensor = decoderOutputs['output_kv_cache'];
const crossAttentionQKsForTokenOnnx = decoderOutputs['cross_attention_qks'];
const crossAttentionQKsForToken = makeOnnxLikeFloat32Tensor(crossAttentionQKsForTokenOnnx);
crossAttentionQKsForTokenOnnx.dispose();
// Get logits
const resultLogitsFloatArrays = splitFloat32Array(logitsBuffer, logitsBuffer.length / decoderOutputs['logits'].dims[1]);
const allTokenLogits = Array.from(resultLogitsFloatArrays[resultLogitsFloatArrays.length - 1]);
// Suppress metadata tokens in the suppression set
for (const suppressedTokenIndex of suppressedMetadataTokens) {
allTokenLogits[suppressedTokenIndex] = -Infinity;
}
if (!atLeastOneTextTokenDecoded) {
// If in initial state, suppress end-of-text token
allTokenLogits[endOfTextToken] = -Infinity;
}
const timestampTokenLogits = allTokenLogits.slice(timestampTokensStart);
const decodeTimestampTokenIfNeeded = () => {
// Try to decode a timestamp token, if needed
// If timestamp tokens is disabled in options, don't decode a timestamp
if (!options.decodeTimestampTokens) {
return false;
}
// If this is the first token in the part, unconditionally decode a timestamp token
// for time 0.0
if (isInitialState) {
addToken(timestampTokensStart, timestampTokenLogits, 1.0, crossAttentionQKsForToken);
return true;
}
const previousTokenWasTimestamp = this.isTimestampToken(decodedTokens[decodedTokens.length - 1]);
const secondPreviousTokenWasTimestamp = this.isTimestampToken(decodedTokens[decodedTokens.length - 2]);
// If there are two successive timestamp tokens decoded, or the previous timestamp was the first token,
// don't decode a timestamp
if (previousTokenWasTimestamp &&
((decodedTokens.length === initialTokens.length + 1) || secondPreviousTokenWasTimestamp)) {
return false;
}
// Derive token probabilities
const allTokenProbabilities = softmax(allTokenLogits, 1.0);
const allTokenLogProbabilities = logOfVector(allTokenProbabilities);
const nonTimestampTokenLogProbs = allTokenLogProbabilities.slice(0, timestampTokensStart);
// Find highest non-timestamp token
const indexOfMaxNonTimestampLogProb = indexOfMax(nonTimestampTokenLogProbs);
const valueOfMaxNonTimestampLogProb = nonTimestampTokenLogProbs[indexOfMaxNonTimestampLogProb];
// Find highest timestamp token
const timestampTokenLogProbs = allTokenLogProbabilities.slice(timestampTokensStart);
const indexOfMaxTimestampLogProb = indexOfMax(timestampTokenLogProbs);
// Compute the log of the sum of exponentials of the log probabilities
// of the timestamp tokens
const logSumExpOfTimestampTokenLogProbs = logSumExp(timestampTokenLogProbs);
// If the sum isn't greater than the log probability of the highest non-timestamp token,
// don't decode a timestamp
if (logSumExpOfTimestampTokenLogProbs <= valueOfMaxNonTimestampLogProb) {
return false;
}
// Decode a timestamp token
timestampTokenSeenCount += 1;
if (previousTokenWasTimestamp) {
// If previously decoded token was a timestamp token, repeat it
const previousToken = decodedTokens[decodedTokens.length - 1];
const previousTokenTimestampLogits = decodedTokensTimestampLogits[decodedTokensTimestampLogits.length - 1];
const previousTokenConfidence = decodedTokensConfidence[decodedTokensConfidence.length - 1];
addToken(previousToken, previousTokenTimestampLogits, previousTokenConfidence, crossAttentionQKsForToken);
lastTimestampTokenIndex = decodedTokens.length;
}
else {
// Otherwise decode the highest probability timestamp
const timestampToken = timestampTokensStart + indexOfMaxTimestampLogProb;
const confidence = allTokenProbabilities[timestampToken];
addToken(timestampToken, timestampTokenLogits, confidence, crossAttentionQKsForToken);
}
return true;
};
// Call the method to decode timestamp token if needed
const timestampTokenDecoded = decodeTimestampTokenIfNeeded();
if (timestampTokenDecoded) {
await yieldToEventLoop();
continue;
}
// Decode a non-timestamp token
let nonTimestampTokenLogits = allTokenLogits.slice(0, timestampTokensStart);
let shouldDecodeEndfOfTextToken = false;
// If at least one text token was decoded, and the end-of-text token's probability is
// sufficiently higher than the second highest ranked token, then accept end-of-text
if (atLeastOneTextTokenDecoded) {
const endOfTextTokenLogit = nonTimestampTokenLogits[endOfTextToken];
const otherTokensLogits = nonTimestampTokenLogits.slice();
otherTokensLogits[endOfTextToken] = -Infinity;
const indexOfMaximumOtherTokenLogit = indexOfMax(otherTokensLogits);
const maximumOtherTokenLogit = nonTimestampTokenLogits[indexOfMaximumOtherTokenLogit];
const endProbabilities = softmax([endOfTextTokenLogit, maximumOtherTokenLogit], 1.0);
if (endProbabilities[0] > options.endTokenThreshold) {
shouldDecodeEndfOfTextToken = true;
}
}
if (logitFilter) {
// Apply custom logit filter function if given
nonTimestampTokenLogits = logitFilter(nonTimestampTokenLogits, decodedTokens, isFirstPart, isFinalPart);
// If the custom filter set the end-of-text token to be Infinity, or -Infinity,
// then override any previous decision and accept or reject it, respectively
if (nonTimestampTokenLogits[endOfTextToken] === Infinity) {
shouldDecodeEndfOfTextToken = true;
}
else if (nonTimestampTokenLogits[endOfTextToken] === -Infinity) {
shouldDecodeEndfOfTextToken = false;
}
// If filter caused all word token logits to be -Infinity, then there is no
// other token to decode. Fall back to accept end-of-text
if (nonTimestampTokenLogits.slice(0, endOfTextToken).every(logit => logit === -Infinity)) {
shouldDecodeEndfOfTextToken = true;
}
}
else {
// Otherwise, suppress text tokens in the suppression set
for (const suppressedTokenIndex of suppressedTextTokens) {
nonTimestampTokenLogits[suppressedTokenIndex] = -Infinity;
}
// Suppress the space token if at initial state
if (isInitialState) {
nonTimestampTokenLogits[spaceToken] = -Infinity;
}
}
// If end-of-text token should be decoded, then add it and break
// out of the loop
if (shouldDecodeEndfOfTextToken) {
addToken(endOfTextToken, timestampTokenLogits, 1.0, crossAttentionQKsForToken);
break;
}
// Suppress end-of-text token if it shouldn't be included in candidates
if (!options.includeEndTokenInCandidates) {
nonTimestampTokenLogits[endOfTextToken] = -Infinity;
}
// Find top candidates
const sortedTopCandidateTokens = getTopKIndexes(nonTimestampTokenLogits, options.topCandidateCount, true);
let topCandidates = Array.from(sortedTopCandidateTokens).map(token => {
const logit = nonTimestampTokenLogits[token];
return {
token,
logit,
text: this.tokenToText(token, true)
};
});
// Apply repetition suppression if enabled
if (options.suppressRepetition) {
// Using some hardcoded constants, for now:
const tokenWindowSize = 30;
const thresholdMatchLength = 4;
const thresholdCycleRepetitionCount = 3;
const filteredCandidates = [];
for (const candidate of topCandidates) {
const decodedTextTokens = decodedTokens.filter(token => this.isTextToken(token));
const lastDecodedTextTokens = decodedTextTokens
.slice(Math.max(decodedTextTokens.length - tokenWindowSize, 0))
.reverse();
const { longestMatchLength, longestCycleRepetitionCount } = getTokenRepetitionScore([candidate.token, ...lastDecodedTextTokens]);
if (longestMatchLength >= thresholdMatchLength || longestCycleRepetitionCount >= thresholdCycleRepetitionCount) {
continue;
}
filteredCandidates.push(candidate);
}
// If all candidates have been filtered out, accept an end-of-text token
if (filteredCandidates.length === 0) {
filteredCandidates.push({
token: endOfTextToken,
logit: Infinity,
text: this.tokenToText(endOfTextToken, true)
});
}
topCandidates = filteredCandidates;
}
// Compute top candidate probabilities
const topCandidateProbabilities = softmax(topCandidates.map(a => a.logit), options.temperature);
// Find highest ranking punctuation token
const rankOfPromisingPunctuationToken = topCandidates.findIndex((entry, index) => {
const tokenText = this.tokenToText(entry.token).trim();
const isPunctuationToken = allowedPunctuationMarks.includes(tokenText);
if (!isPunctuationToken) {
return false;
}
const tokenProb = topCandidateProbabilities[index];
return tokenProb >= options.punctuationThreshold;
});
// Find rank of space token
let rankOfSpaceToken = topCandidates.findIndex(candidate => candidate.token === spaceToken);
if (rankOfSpaceToken < 0) {
rankOfSpaceToken = Infinity;
}
// Choose token
let chosenCandidateRank;
// Select a high-ranking punctuation token if found, and it has
// a rank higher than the space token,
if (rankOfPromisingPunctuationToken >= 0 &&
rankOfPromisingPunctuationToken < rankOfSpaceToken) {
chosenCandidateRank = rankOfPromisingPunctuationToken;
}
else {
// Otherwise, select randomly from top k distribution
chosenCandidateRank = this.randomGen.selectRandomIndexFromDistribution(topCandidateProbabilities);
}
// Add chosen token
const chosenToken = topCandidates[chosenCandidateRank].token;
const chosenTokenConfidence = topCandidateProbabilities[chosenCandidateRank];
addToken(chosenToken, timestampTokenLogits, chosenTokenConfidence, crossAttentionQKsForToken);
// If chosen token is the end-of-text token, break
if (chosenToken === endOfTextToken) {
break;
}
// Print token if needed
if (this.isTextToken(chosenToken)) {
bufferedTokensToPrint.push(chosenToken);
let textToPrint = this.tokensToText(bufferedTokensToPrint);
// If the decoded text is valid, print it
if (!containsInvalidCodepoint(textToPrint)) {
if (isFirstPart && decodedTokens.every(token => this.isMetadataToken(token))) {
textToPrint = textToPrint.trimStart();
}
logger.write(textToPrint);
bufferedTokensToPrint = [];
}
}
await yieldToEventLoop();
}
if (decodedTokensDecodingTime.length === decodedTokensInferenceTime.length - 1) {
decodedTokensDecodingTime.push(tokenDecodingTimeTimer.getElapsedTimeAndRestart());
}
// If at least two timestamp tokens were decoded and it's not the final part,
// truncate up to the last timestamp token
if (timestampTokenSeenCount >= 2 && !isFinalPart) {
const sliceEndTokenIndex = lastTimestampTokenIndex;
decodedTokens = decodedTokens.slice(0, sliceEndTokenIndex);
decodedTokensTimestampLogits = decodedTokensTimestampLogits.slice(0, sliceEndTokenIndex);
decodedTokensCrossAttentionQKs = decodedTokensCrossAttentionQKs.slice(0, sliceEndTokenIndex);
decodedTokensConfidence = decodedTokensConfidence.slice(0, sliceEndTokenIndex);
decodedTokensDecodingTime = decodedTokensDecodingTime.slice(0, sliceEndTokenIndex);
decodedTokensInferenceTime = decodedTokensInferenceTime.slice(0, sliceEndTokenIndex);
}
const decodedTokensOverheadTime = decodedTokensDecodingTime.map((time, index) => time - decodedTokensInferenceTime[index]);
logger.write('\n');
logger.end();
// Return the decoded tokens
return {
decodedTokens,
decodedTokensTimestampLogits,
decodedTokensConfidence,
decodedTokensCrossAttentionQKs,
decodedTokensDecodingTime,
decodedTokensInferenceTime,
decodedTokensOverheadTime,
};
}
// Encode audio using the encoder model
async encodeAudio(rawAudio) {
await this.initializeEncoderSessionIfNeeded();
const Onnx = await import('onnxruntime-node');
const logger = new Logger();
const audioSamples = rawAudio.audioChannels[0];
const sampleRate = rawAudio.sampleRate;
const fftOrder = 400;
const fftWindowSize = 400;
const fftHopLength = 160;
const filterbankCount = this.filterbankCount;
const filterbanks = this.filterbanks;
const maxAudioSamples = sampleRate * 30;
const maxAudioFrames = 3000;
if (sampleRate !== 16000) {
throw new Error('Audio must have a sample rate of 16000 Hz');
}
if (audioSamples.length > maxAudioSamples) {
throw new Error(`Audio part is longer than 30 seconds`);
}
await logger.startAsync('Extract Mel spectrogram from audio part');
// Pad audio samples to ensure that have a duration of 30 seconds
const paddedAudioSamples = new Float32Array(maxAudioSamples);
paddedAudioSamples.set(audioSamples, 0);
const rawAudioPart = { audioChannels: [paddedAudioSamples], sampleRate };
// Compute Mel spectrogram
const { melSpectrogram } = await computeMelSpectrogramUsingFilterbanks(rawAudioPart, fftOrder, fftWindowSize, fftHopLength, filterbanks);
// Flatten, transpose, apply logarithm and normalize Mel spectrogram
await logger.startAsync('Process Mel spectrogram');
const flattenedLogMelSpectrogram = new Float32Array(maxAudioFrames * filterbankCount);
let maxLogMel = -Infinity;
for (let i = 0; i < filterbankCount; i++) {
for (let j = 0; j < maxAudioFrames; j++) {
const mel = melSpectrogram[j][i];
const logMel = Math.log10(Math.max(mel, 1e-10));
if (logMel > maxLogMel) {
maxLogMel = logMel;
}
flattenedLogMelSpectrogram[(i * maxAudioFrames) + j] = logMel;
}
}
for (let i = 0; i < flattenedLogMelSpectrogram.length; i++) {
const logMel = flattenedLogMelSpectrogram[i];
const normalizedLogMel = (Math.max(logMel, maxLogMel - 8) + 4) / 4;
flattenedLogMelSpectrogram[i] = normalizedLogMel;
}
// Run the encoder model
await logger.startAsync('Encode Mel spectrogram with Whisper encoder model');
const inputTensor = new Onnx.Tensor('float32', flattenedLogMelSpectrogram, [1, filterbankCount, maxAudioFrames]);
const encoderInputs = { mel: inputTensor