UNPKG

dygraphs

Version:

dygraphs is a fast, flexible open source JavaScript charting library.

866 lines (765 loc) 27.8 kB
/** * @license * Copyright 2006 Dan Vanderkam (danvdk@gmail.com) * MIT-licenced: https://opensource.org/licenses/MIT */ /** * @fileoverview Based on PlotKit.CanvasRenderer, but modified to meet the * needs of dygraphs. * * In particular, support for: * - grid overlays * - high/low bands * - dygraphs attribute system */ /** * The DygraphCanvasRenderer class does the actual rendering of the chart onto * a canvas. It's based on PlotKit.CanvasRenderer. * @param {Object} element The canvas to attach to * @param {Object} elementContext The 2d context of the canvas (injected so it * can be mocked for testing.) * @param {Layout} layout The DygraphLayout object for this graph. * @constructor */ /*global Dygraph:false */ "use strict"; import * as utils from './dygraph-utils'; import Dygraph from './dygraph'; /** * @constructor * * This gets called when there are "new points" to chart. This is generally the * case when the underlying data being charted has changed. It is _not_ called * in the common case that the user has zoomed or is panning the view. * * The chart canvas has already been created by the Dygraph object. The * renderer simply gets a drawing context. * * @param {Dygraph} dygraph The chart to which this renderer belongs. * @param {HTMLCanvasElement} element The &lt;canvas&gt; DOM element on which to draw. * @param {CanvasRenderingContext2D} elementContext The drawing context. * @param {DygraphLayout} layout The chart's DygraphLayout object. * * TODO(danvk): remove the elementContext property. */ var DygraphCanvasRenderer = function(dygraph, element, elementContext, layout) { this.dygraph_ = dygraph; this.layout = layout; this.element = element; this.elementContext = elementContext; this.height = dygraph.height_; this.width = dygraph.width_; // --- check whether everything is ok before we return if (!utils.isCanvasSupported(this.element)) { throw "Canvas is not supported."; } // internal state this.area = layout.getPlotArea(); // Set up a clipping area for the canvas (and the interaction canvas). // This ensures that we don't overdraw. var ctx = this.dygraph_.canvas_ctx_; ctx.beginPath(); ctx.rect(this.area.x, this.area.y, this.area.w, this.area.h); ctx.clip(); ctx = this.dygraph_.hidden_ctx_; ctx.beginPath(); ctx.rect(this.area.x, this.area.y, this.area.w, this.area.h); ctx.clip(); }; /** * Clears out all chart content and DOM elements. * This is called immediately before render() on every frame, including * during zooms and pans. * @private */ DygraphCanvasRenderer.prototype.clear = function() { this.elementContext.clearRect(0, 0, this.width, this.height); }; /** * This method is responsible for drawing everything on the chart, including * lines, high/low bands, fills and axes. * It is called immediately after clear() on every frame, including during pans * and zooms. * @private */ DygraphCanvasRenderer.prototype.render = function() { // attaches point.canvas{x,y} this._updatePoints(); // actually draws the chart. this._renderLineChart(); }; /** * Returns a predicate to be used with an iterator, which will * iterate over points appropriately, depending on whether * connectSeparatedPoints is true. When it's false, the predicate will * skip over points with missing yVals. */ DygraphCanvasRenderer._getIteratorPredicate = function(connectSeparatedPoints) { return connectSeparatedPoints ? DygraphCanvasRenderer._predicateThatSkipsEmptyPoints : null; }; DygraphCanvasRenderer._predicateThatSkipsEmptyPoints = function(array, idx) { return array[idx].yval !== null; }; /** * Draws a line with the styles passed in and calls all the drawPointCallbacks. * @param {Object} e The dictionary passed to the plotter function. * @private */ DygraphCanvasRenderer._drawStyledLine = function(e, color, strokeWidth, strokePattern, drawPoints, drawPointCallback, pointSize) { var g = e.dygraph; // TODO(konigsberg): Compute attributes outside this method call. var stepPlot = g.getBooleanOption("stepPlot", e.setName); if (!utils.isArrayLike(strokePattern)) { strokePattern = null; } var drawGapPoints = g.getBooleanOption('drawGapEdgePoints', e.setName); var points = e.points; var setName = e.setName; var iter = utils.createIterator(points, 0, points.length, DygraphCanvasRenderer._getIteratorPredicate( g.getBooleanOption("connectSeparatedPoints", setName))); var stroking = strokePattern && (strokePattern.length >= 2); var ctx = e.drawingContext; ctx.save(); if (stroking) { if (ctx.setLineDash) ctx.setLineDash(strokePattern); } var pointsOnLine = DygraphCanvasRenderer._drawSeries( e, iter, strokeWidth, pointSize, drawPoints, drawGapPoints, stepPlot, color); DygraphCanvasRenderer._drawPointsOnLine( e, pointsOnLine, drawPointCallback, color, pointSize); if (stroking) { if (ctx.setLineDash) ctx.setLineDash([]); } ctx.restore(); }; /** * This does the actual drawing of lines on the canvas, for just one series. * Returns a list of [canvasx, canvasy] pairs for points for which a * drawPointCallback should be fired. These include isolated points, or all * points if drawPoints=true. * @param {Object} e The dictionary passed to the plotter function. * @private */ DygraphCanvasRenderer._drawSeries = function(e, iter, strokeWidth, pointSize, drawPoints, drawGapPoints, stepPlot, color) { var prevCanvasX = null; var prevCanvasY = null; var nextCanvasY = null; var isIsolated; // true if this point is isolated (no line segments) var point; // the point being processed in the while loop var pointsOnLine = []; // Array of [canvasx, canvasy] pairs. var first = true; // the first cycle through the while loop var ctx = e.drawingContext; ctx.beginPath(); ctx.strokeStyle = color; ctx.lineWidth = strokeWidth; // NOTE: we break the iterator's encapsulation here for about a 25% speedup. var arr = iter.array_; var limit = iter.end_; var predicate = iter.predicate_; for (var i = iter.start_; i < limit; i++) { point = arr[i]; if (predicate) { while (i < limit && !predicate(arr, i)) { i++; } if (i == limit) break; point = arr[i]; } // FIXME: The 'canvasy != canvasy' test here catches NaN values but the test // doesn't catch Infinity values. Could change this to // !isFinite(point.canvasy), but I assume it avoids isNaN for performance? if (point.canvasy === null || point.canvasy != point.canvasy) { if (stepPlot && prevCanvasX !== null) { // Draw a horizontal line to the start of the missing data ctx.moveTo(prevCanvasX, prevCanvasY); ctx.lineTo(point.canvasx, prevCanvasY); } prevCanvasX = prevCanvasY = null; } else { isIsolated = false; if (drawGapPoints || prevCanvasX === null) { iter.nextIdx_ = i; iter.next(); nextCanvasY = iter.hasNext ? iter.peek.canvasy : null; var isNextCanvasYNullOrNaN = nextCanvasY === null || nextCanvasY != nextCanvasY; isIsolated = (prevCanvasX === null && isNextCanvasYNullOrNaN); if (drawGapPoints) { // Also consider a point to be "isolated" if it's adjacent to a // null point, excluding the graph edges. if ((!first && prevCanvasX === null) || (iter.hasNext && isNextCanvasYNullOrNaN)) { isIsolated = true; } } } if (prevCanvasX !== null) { if (strokeWidth) { if (stepPlot) { ctx.moveTo(prevCanvasX, prevCanvasY); ctx.lineTo(point.canvasx, prevCanvasY); } ctx.lineTo(point.canvasx, point.canvasy); } } else { ctx.moveTo(point.canvasx, point.canvasy); } if (drawPoints || isIsolated) { pointsOnLine.push([point.canvasx, point.canvasy, point.idx]); } prevCanvasX = point.canvasx; prevCanvasY = point.canvasy; } first = false; } ctx.stroke(); return pointsOnLine; }; /** * This fires the drawPointCallback functions, which draw dots on the points by * default. This gets used when the "drawPoints" option is set, or when there * are isolated points. * @param {Object} e The dictionary passed to the plotter function. * @private */ DygraphCanvasRenderer._drawPointsOnLine = function( e, pointsOnLine, drawPointCallback, color, pointSize) { var ctx = e.drawingContext; for (var idx = 0; idx < pointsOnLine.length; idx++) { var cb = pointsOnLine[idx]; ctx.save(); drawPointCallback.call(e.dygraph, e.dygraph, e.setName, ctx, cb[0], cb[1], color, pointSize, cb[2]); ctx.restore(); } }; /** * Attaches canvas coordinates to the points array. * @private */ DygraphCanvasRenderer.prototype._updatePoints = function() { // Update Points // TODO(danvk): here // // TODO(bhs): this loop is a hot-spot for high-point-count charts. These // transformations can be pushed into the canvas via linear transformation // matrices. // NOTE(danvk): this is trickier than it sounds at first. The transformation // needs to be done before the .moveTo() and .lineTo() calls, but must be // undone before the .stroke() call to ensure that the stroke width is // unaffected. An alternative is to reduce the stroke width in the // transformed coordinate space, but you can't specify different values for // each dimension (as you can with .scale()). The speedup here is ~12%. var sets = this.layout.points; for (var i = sets.length; i--;) { var points = sets[i]; for (var j = points.length; j--;) { var point = points[j]; point.canvasx = this.area.w * point.x + this.area.x; point.canvasy = this.area.h * point.y + this.area.y; } } }; /** * Add canvas Actually draw the lines chart, including high/low bands. * * This function can only be called if DygraphLayout's points array has been * updated with canvas{x,y} attributes, i.e. by * DygraphCanvasRenderer._updatePoints. * * @param {string=} opt_seriesName when specified, only that series will * be drawn. (This is used for expedited redrawing with highlightSeriesOpts) * @param {CanvasRenderingContext2D} opt_ctx when specified, the drawing * context. However, lines are typically drawn on the object's * elementContext. * @private */ DygraphCanvasRenderer.prototype._renderLineChart = function(opt_seriesName, opt_ctx) { var ctx = opt_ctx || this.elementContext; var i; var sets = this.layout.points; var setNames = this.layout.setNames; var setName; this.colors = this.dygraph_.colorsMap_; // Determine which series have specialized plotters. var plotter_attr = this.dygraph_.getOption("plotter"); var plotters = plotter_attr; if (!utils.isArrayLike(plotters)) { plotters = [plotters]; } var setPlotters = {}; // series name -> plotter fn. for (i = 0; i < setNames.length; i++) { setName = setNames[i]; var setPlotter = this.dygraph_.getOption("plotter", setName); if (setPlotter == plotter_attr) continue; // not specialized. setPlotters[setName] = setPlotter; } for (i = 0; i < plotters.length; i++) { var plotter = plotters[i]; var is_last = (i == plotters.length - 1); for (var j = 0; j < sets.length; j++) { setName = setNames[j]; if (opt_seriesName && setName != opt_seriesName) continue; var points = sets[j]; // Only throw in the specialized plotters on the last iteration. var p = plotter; if (setName in setPlotters) { if (is_last) { p = setPlotters[setName]; } else { // Don't use the standard plotters in this case. continue; } } var color = this.colors[setName]; var strokeWidth = this.dygraph_.getOption("strokeWidth", setName); ctx.save(); ctx.strokeStyle = color; ctx.lineWidth = strokeWidth; p({ points: points, setName: setName, drawingContext: ctx, color: color, strokeWidth: strokeWidth, dygraph: this.dygraph_, axis: this.dygraph_.axisPropertiesForSeries(setName), plotArea: this.area, seriesIndex: j, seriesCount: sets.length, singleSeriesName: opt_seriesName, allSeriesPoints: sets }); ctx.restore(); } } }; /** * Standard plotters. These may be used by clients via Dygraph.Plotters. * See comments there for more details. */ DygraphCanvasRenderer._Plotters = { linePlotter: function(e) { DygraphCanvasRenderer._linePlotter(e); }, fillPlotter: function(e) { DygraphCanvasRenderer._fillPlotter(e); }, errorPlotter: function(e) { DygraphCanvasRenderer._errorPlotter(e); } }; /** * Plotter which draws the central lines for a series. * @private */ DygraphCanvasRenderer._linePlotter = function(e) { var g = e.dygraph; var setName = e.setName; var strokeWidth = e.strokeWidth; // TODO(danvk): Check if there's any performance impact of just calling // getOption() inside of _drawStyledLine. Passing in so many parameters makes // this code a bit nasty. var borderWidth = g.getNumericOption("strokeBorderWidth", setName); var drawPointCallback = g.getOption("drawPointCallback", setName) || utils.Circles.DEFAULT; var strokePattern = g.getOption("strokePattern", setName); var drawPoints = g.getBooleanOption("drawPoints", setName); var pointSize = g.getNumericOption("pointSize", setName); if (borderWidth && strokeWidth) { DygraphCanvasRenderer._drawStyledLine(e, g.getOption("strokeBorderColor", setName), strokeWidth + 2 * borderWidth, strokePattern, drawPoints, drawPointCallback, pointSize ); } DygraphCanvasRenderer._drawStyledLine(e, e.color, strokeWidth, strokePattern, drawPoints, drawPointCallback, pointSize ); }; /** * Draws the shaded high/low bands (confidence intervals) for each series. * This happens before the center lines are drawn, since the center lines * need to be drawn on top of the high/low bands for all series. * @private */ DygraphCanvasRenderer._errorPlotter = function(e) { var g = e.dygraph; var setName = e.setName; var errorBars = g.getBooleanOption("errorBars") || g.getBooleanOption("customBars"); if (!errorBars) return; var fillGraph = g.getBooleanOption("fillGraph", setName); if (fillGraph) { console.warn("Can't use fillGraph option with customBars or errorBars option"); } var ctx = e.drawingContext; var color = e.color; var fillAlpha = g.getNumericOption('fillAlpha', setName); var stepPlot = g.getBooleanOption("stepPlot", setName); var points = e.points; var iter = utils.createIterator(points, 0, points.length, DygraphCanvasRenderer._getIteratorPredicate( g.getBooleanOption("connectSeparatedPoints", setName))); var newYs; // setup graphics context var prevX = NaN; var prevY = NaN; var prevYs = [-1, -1]; // should be same color as the lines but only 15% opaque. var rgb = utils.toRGB_(color); var err_color = 'rgba(' + rgb.r + ',' + rgb.g + ',' + rgb.b + ',' + fillAlpha + ')'; ctx.fillStyle = err_color; ctx.beginPath(); var isNullUndefinedOrNaN = function(x) { return (x === null || x === undefined || isNaN(x)); }; while (iter.hasNext) { var point = iter.next(); if ((!stepPlot && isNullUndefinedOrNaN(point.y)) || (stepPlot && !isNaN(prevY) && isNullUndefinedOrNaN(prevY))) { prevX = NaN; continue; } newYs = [ point.y_bottom, point.y_top ]; if (stepPlot) { prevY = point.y; } // The documentation specifically disallows nulls inside the point arrays, // but in case it happens we should do something sensible. if (isNaN(newYs[0])) newYs[0] = point.y; if (isNaN(newYs[1])) newYs[1] = point.y; newYs[0] = e.plotArea.h * newYs[0] + e.plotArea.y; newYs[1] = e.plotArea.h * newYs[1] + e.plotArea.y; if (!isNaN(prevX)) { if (stepPlot) { ctx.moveTo(prevX, prevYs[0]); ctx.lineTo(point.canvasx, prevYs[0]); ctx.lineTo(point.canvasx, prevYs[1]); } else { ctx.moveTo(prevX, prevYs[0]); ctx.lineTo(point.canvasx, newYs[0]); ctx.lineTo(point.canvasx, newYs[1]); } ctx.lineTo(prevX, prevYs[1]); ctx.closePath(); } prevYs = newYs; prevX = point.canvasx; } ctx.fill(); }; /** * Proxy for CanvasRenderingContext2D which drops moveTo/lineTo calls which are * superfluous. It accumulates all movements which haven't changed the x-value * and only applies the two with the most extreme y-values. * * Calls to lineTo/moveTo must have non-decreasing x-values. */ DygraphCanvasRenderer._fastCanvasProxy = function(context) { var pendingActions = []; // array of [type, x, y] tuples var lastRoundedX = null; var lastFlushedX = null; var LINE_TO = 1, MOVE_TO = 2; var actionCount = 0; // number of moveTos and lineTos passed to context. // Drop superfluous motions // Assumes all pendingActions have the same (rounded) x-value. var compressActions = function(opt_losslessOnly) { if (pendingActions.length <= 1) return; // Lossless compression: drop inconsequential moveTos. for (var i = pendingActions.length - 1; i > 0; i--) { var action = pendingActions[i]; if (action[0] == MOVE_TO) { var prevAction = pendingActions[i - 1]; if (prevAction[1] == action[1] && prevAction[2] == action[2]) { pendingActions.splice(i, 1); } } } // Lossless compression: ... drop consecutive moveTos ... for (var i = 0; i < pendingActions.length - 1; /* incremented internally */) { var action = pendingActions[i]; if (action[0] == MOVE_TO && pendingActions[i + 1][0] == MOVE_TO) { pendingActions.splice(i, 1); } else { i++; } } // Lossy compression: ... drop all but the extreme y-values ... if (pendingActions.length > 2 && !opt_losslessOnly) { // keep an initial moveTo, but drop all others. var startIdx = 0; if (pendingActions[0][0] == MOVE_TO) startIdx++; var minIdx = null, maxIdx = null; for (var i = startIdx; i < pendingActions.length; i++) { var action = pendingActions[i]; if (action[0] != LINE_TO) continue; if (minIdx === null && maxIdx === null) { minIdx = i; maxIdx = i; } else { var y = action[2]; if (y < pendingActions[minIdx][2]) { minIdx = i; } else if (y > pendingActions[maxIdx][2]) { maxIdx = i; } } } var minAction = pendingActions[minIdx], maxAction = pendingActions[maxIdx]; pendingActions.splice(startIdx, pendingActions.length - startIdx); if (minIdx < maxIdx) { pendingActions.push(minAction); pendingActions.push(maxAction); } else if (minIdx > maxIdx) { pendingActions.push(maxAction); pendingActions.push(minAction); } else { pendingActions.push(minAction); } } }; var flushActions = function(opt_noLossyCompression) { compressActions(opt_noLossyCompression); for (var i = 0, len = pendingActions.length; i < len; i++) { var action = pendingActions[i]; if (action[0] == LINE_TO) { context.lineTo(action[1], action[2]); } else if (action[0] == MOVE_TO) { context.moveTo(action[1], action[2]); } } if (pendingActions.length) { lastFlushedX = pendingActions[pendingActions.length - 1][1]; } actionCount += pendingActions.length; pendingActions = []; }; var addAction = function(action, x, y) { var rx = Math.round(x); if (lastRoundedX === null || rx != lastRoundedX) { // if there are large gaps on the x-axis, it's essential to keep the // first and last point as well. var hasGapOnLeft = (lastRoundedX - lastFlushedX > 1), hasGapOnRight = (rx - lastRoundedX > 1), hasGap = hasGapOnLeft || hasGapOnRight; flushActions(hasGap); lastRoundedX = rx; } pendingActions.push([action, x, y]); }; return { moveTo: function(x, y) { addAction(MOVE_TO, x, y); }, lineTo: function(x, y) { addAction(LINE_TO, x, y); }, // for major operations like stroke/fill, we skip compression to ensure // that there are no artifacts at the right edge. stroke: function() { flushActions(true); context.stroke(); }, fill: function() { flushActions(true); context.fill(); }, beginPath: function() { flushActions(true); context.beginPath(); }, closePath: function() { flushActions(true); context.closePath(); }, _count: function() { return actionCount; } }; }; /** * Draws the shaded regions when "fillGraph" is set. * Not to be confused with high/low bands (historically misnamed errorBars). * * For stacked charts, it's more convenient to handle all the series * simultaneously. So this plotter plots all the points on the first series * it's asked to draw, then ignores all the other series. * * @private */ DygraphCanvasRenderer._fillPlotter = function(e) { // Skip if we're drawing a single series for interactive highlight overlay. if (e.singleSeriesName) return; // We'll handle all the series at once, not one-by-one. if (e.seriesIndex !== 0) return; var g = e.dygraph; var setNames = g.getLabels().slice(1); // remove x-axis // getLabels() includes names for invisible series, which are not included in // allSeriesPoints. We remove those to make the two match. // TODO(danvk): provide a simpler way to get this information. for (var i = setNames.length; i >= 0; i--) { if (!g.visibility()[i]) setNames.splice(i, 1); } var anySeriesFilled = (function() { for (var i = 0; i < setNames.length; i++) { if (g.getBooleanOption("fillGraph", setNames[i])) return true; } return false; })(); if (!anySeriesFilled) return; var area = e.plotArea; var sets = e.allSeriesPoints; var setCount = sets.length; var stackedGraph = g.getBooleanOption("stackedGraph"); var colors = g.getColors(); // For stacked graphs, track the baseline for filling. // // The filled areas below graph lines are trapezoids with two // vertical edges. The top edge is the line segment being drawn, and // the baseline is the bottom edge. Each baseline corresponds to the // top line segment from the previous stacked line. In the case of // step plots, the trapezoids are rectangles. var baseline = {}; var currBaseline; var prevStepPlot; // for different line drawing modes (line/step) per series // Helper function to trace a line back along the baseline. var traceBackPath = function(ctx, baselineX, baselineY, pathBack) { ctx.lineTo(baselineX, baselineY); if (stackedGraph) { for (var i = pathBack.length - 1; i >= 0; i--) { var pt = pathBack[i]; ctx.lineTo(pt[0], pt[1]); } } }; // process sets in reverse order (needed for stacked graphs) for (var setIdx = setCount - 1; setIdx >= 0; setIdx--) { var ctx = e.drawingContext; var setName = setNames[setIdx]; if (!g.getBooleanOption('fillGraph', setName)) continue; var fillAlpha = g.getNumericOption('fillAlpha', setName); var stepPlot = g.getBooleanOption('stepPlot', setName); var color = colors[setIdx]; var axis = g.axisPropertiesForSeries(setName); var axisY = 1.0 + axis.minyval * axis.yscale; if (axisY < 0.0) axisY = 0.0; else if (axisY > 1.0) axisY = 1.0; axisY = area.h * axisY + area.y; var points = sets[setIdx]; var iter = utils.createIterator(points, 0, points.length, DygraphCanvasRenderer._getIteratorPredicate( g.getBooleanOption("connectSeparatedPoints", setName))); // setup graphics context var prevX = NaN; var prevYs = [-1, -1]; var newYs; // should be same color as the lines but only 15% opaque. var rgb = utils.toRGB_(color); var err_color = 'rgba(' + rgb.r + ',' + rgb.g + ',' + rgb.b + ',' + fillAlpha + ')'; ctx.fillStyle = err_color; ctx.beginPath(); var last_x, is_first = true; // If the point density is high enough, dropping segments on their way to // the canvas justifies the overhead of doing so. if (points.length > 2 * g.width_ || Dygraph.FORCE_FAST_PROXY) { ctx = DygraphCanvasRenderer._fastCanvasProxy(ctx); } // For filled charts, we draw points from left to right, then back along // the x-axis to complete a shape for filling. // For stacked plots, this "back path" is a more complex shape. This array // stores the [x, y] values needed to trace that shape. var pathBack = []; // TODO(danvk): there are a lot of options at play in this loop. // The logic would be much clearer if some (e.g. stackGraph and // stepPlot) were split off into separate sub-plotters. var point; while (iter.hasNext) { point = iter.next(); if (!utils.isOK(point.y) && !stepPlot) { traceBackPath(ctx, prevX, prevYs[1], pathBack); pathBack = []; prevX = NaN; if (point.y_stacked !== null && !isNaN(point.y_stacked)) { baseline[point.canvasx] = area.h * point.y_stacked + area.y; } continue; } if (stackedGraph) { if (!is_first && last_x == point.xval) { continue; } else { is_first = false; last_x = point.xval; } currBaseline = baseline[point.canvasx]; var lastY; if (currBaseline === undefined) { lastY = axisY; } else { if(prevStepPlot) { lastY = currBaseline[0]; } else { lastY = currBaseline; } } newYs = [ point.canvasy, lastY ]; if (stepPlot) { // Step plots must keep track of the top and bottom of // the baseline at each point. if (prevYs[0] === -1) { baseline[point.canvasx] = [ point.canvasy, axisY ]; } else { baseline[point.canvasx] = [ point.canvasy, prevYs[0] ]; } } else { baseline[point.canvasx] = point.canvasy; } } else { if (isNaN(point.canvasy) && stepPlot) { newYs = [ area.y + area.h, axisY ]; } else { newYs = [ point.canvasy, axisY ]; } } if (!isNaN(prevX)) { // Move to top fill point if (stepPlot) { ctx.lineTo(point.canvasx, prevYs[0]); ctx.lineTo(point.canvasx, newYs[0]); } else { ctx.lineTo(point.canvasx, newYs[0]); } // Record the baseline for the reverse path. if (stackedGraph) { pathBack.push([prevX, prevYs[1]]); if (prevStepPlot && currBaseline) { // Draw to the bottom of the baseline pathBack.push([point.canvasx, currBaseline[1]]); } else { pathBack.push([point.canvasx, newYs[1]]); } } } else { ctx.moveTo(point.canvasx, newYs[1]); ctx.lineTo(point.canvasx, newYs[0]); } prevYs = newYs; prevX = point.canvasx; } prevStepPlot = stepPlot; if (newYs && point) { traceBackPath(ctx, point.canvasx, newYs[1], pathBack); pathBack = []; } ctx.fill(); } }; export default DygraphCanvasRenderer;