UNPKG

durable-execution

Version:

A durable task engine for running tasks durably and resiliently

1,060 lines (936 loc) 28.4 kB
# durable-execution [![NPM Version](https://img.shields.io/npm/v/durable-execution)](https://www.npmjs.com/package/durable-execution) [![License](https://img.shields.io/npm/l/durable-execution)](https://github.com/gpahal/durable-execution/blob/main/LICENSE) A durable execution engine for running tasks durably and resiliently. Tasks can range from being a simple function to a complex workflow. The tasks are resilient to logic failures, process failures, network connectivity issues, and other transient errors. The tasks logic should be idempotent as they may be executed multiple times if there is a process failure or if the task is retried. ## Properties of durable tasks - Tasks should be idempotent as they may be executed multiple times if there is a process failure - Tasks can take input and return output - Tasks can be cancelled - Tasks can be waited on to finish - Tasks can execute children tasks in parallel and return output once all the children tasks are finished See the [Design](#design) section for more details on the internal workings. ## Installation - npm ```bash npm install durable-execution ``` - pnpm ```bash pnpm add durable-execution ``` ## Usage - Create a storage implementation that implements the [DurableStorage](https://gpahal.github.io/durable-execution/types/DurableStorage.html) type. The implementation should support async transactions that allow running multiple transactions in parallel - A storage implementation using Drizzle ORM is provided in the [durable-execution-storage-drizzle](https://github.com/gpahal/durable-execution/tree/main/storage-drizzle) package - A very simple in-memory implementation is provided in the [src/storage.ts](https://github.com/gpahal/durable-execution/blob/main/durable-execution/src/storage.ts) file for testing and simple use cases - Create a durable executor and manage its lifecycle ```ts import { DurableExecutor } from 'durable-execution' const executor = new DurableExecutor(storage) async function app() { // ... use the durable executor to enqueue functions and workflows } // Start the durable executor and run the app await Promise.all([ executor.start(), // Start the durable executor in the background app(), // Run the app ]) // Shutdown the durable executor when the app is done await executor.shutdown() ``` - Use the durable executor to enqueue tasks ```ts const extractFileTitle = executor .inputSchema(v.object({ filePath: v.string() })) .task({ id: 'extractFileTitle', timeoutMs: 30_000, // 30 seconds run: async (ctx, input) => { // ... extract the file title return { title: 'File Title', } }, }) const summarizeFile = executor .validateInput(async (input: { filePath: string }) => { if (!isValidFilePath(input.filePath)) { throw new Error('Invalid file path') } return { filePath: input.filePath, } }) .task({ id: 'summarizeFile', timeoutMs: 30_000, // 30 seconds run: async (ctx, input) => { // ... summarize the file return { summary: 'File summary', } }, }) const uploadFile = executor .inputSchema(v.object({ filePath: v.string(), uploadUrl: v.string() })) .parentTask({ id: 'uploadFile', timeoutMs: 60_000, // 1 minute runParent: async (ctx, input) => { // ... upload file to the given uploadUrl // Extract the file title and summarize the file in parallel return { output: { filePath: input.filePath, uploadUrl: input.uploadUrl, fileSize: 100, }, childrenTasks: [ { task: extractFileTitle, input: { filePath: input.filePath }, }, { task: summarizeFile, input: { filePath: input.filePath }, }, ], } }, finalizeTask: { id: 'onUploadFileAndChildrenComplete', timeoutMs: 60_000, // 1 minute run: async (ctx, { input, output, childrenTasksOutputs }) => { // ... combine the output of the run function and children tasks return { filePath: input.filePath, uploadUrl: input.uploadUrl, fileSize: 100, title: 'File Title', summary: 'File summary', } } }, }) async function app() { // Enqueue task and manage its execution lifecycle const uploadFileHandle = await executor.enqueueTask(uploadFile, { filePath: 'file.txt', uploadUrl: 'https://example.com/upload', }) const uploadFileExecution = await uploadFileHandle.getExecution() const uploadFileFinishedExecution = await uploadFileHandle.waitAndGetExecution() await uploadFileHandle.cancel() console.log(uploadFileExecution) } ``` ## Task examples ### Simple sync task ```ts const taskA = executor.task({ id: 'a', timeoutMs: 1000, run: (ctx, input: { name: string }) => { // ... do some synchronous work return `Hello, ${input.name}!` }, }) // Input: { name: 'world' } // Output: 'Hello, world!' ``` ### Simple async task ```ts const taskA = executor.task({ id: 'a', timeoutMs: 1000, run: async (ctx, input: { name: string }) => { // ... do some asynchronous work await sleep(1) return `Hello, ${input.name}!` }, }) // Input: { name: 'world' } // Output: 'Hello, world!' ``` ### Validate input To validate input, use the `validateInput` method before the `task` method. ```ts const taskA = executor .validateInput((input: { name: string }) => { if (input.name !== 'world') { throw new Error('Invalid input') } return input }) .task({ id: 'a', timeoutMs: 1000, run: (ctx, input) => { // ... do some work return `Hello, ${input.name}!` }, }) // Input: { name: 'world' } // Output: 'Hello, world!' ``` ### Validate input with schema To validate input with a schema, use the `inputSchema` method before the `task` method. Any [Standard Schema](https://standardschema.dev/) can be used as an input schema. In this example, zod is used as the input schema. ```ts import { z } from 'zod' const taskA = executor.inputSchema(z.object({ name: z.string() })).task({ id: 'a', timeoutMs: 1000, run: (ctx, input) => { // ... do some work return `Hello, ${input.name}!` }, }) // Input: { name: 'world' } // Output: 'Hello, world!' ``` ### Retries ```ts let totalAttempts = 0 const taskA = executor.task({ id: 'a', retryOptions: { maxAttempts: 5, baseDelayMs: 100, delayMultiplier: 1.5, maxDelayMs: 1000, }, timeoutMs: 1000, run: (ctx, input: { name: string }) => { totalAttempts++ if (ctx.attempt < 2) { throw new Error('Failed') } return { totalAttempts, output: `Hello, ${input.name}!`, } }, }) // Input: { name: 'world' } // Output: { // totalAttempts: 3, // output: 'Hello, world!', // } ``` ### Task run context The [run](https://gpahal.github.io/durable-execution/types/DurableTaskOptions.html#run) function is passed a context object that contains information about the task execution. See the [DurableTaskRunContext](https://gpahal.github.io/durable-execution/types/DurableTaskRunContext.html) type for more details. ```ts const taskA = executor.task({ id: 'a', timeoutMs: 1000, run: (ctx) => { return { taskId: ctx.taskId, executionId: ctx.executionId, attempt: ctx.attempt, prevError: ctx.prevError, } }, }) // Input: undefined // Output: { // taskId: 'a', // executionId: 'te_...', // attempt: 0, // prevError: undefined, // } ``` ### Parent task with parallel children ```mermaid flowchart TD parentTask --> taskA parentTask --> taskB ``` ```ts const taskA = executor.task({ id: 'a', timeoutMs: 1000, run: (ctx, input: { name: string }) => { return `Hello from task A, ${input.name}!` }, }) const taskB = executor.task({ id: 'b', timeoutMs: 1000, run: (ctx, input: { name: string }) => { return `Hello from task B, ${input.name}!` }, }) const parentTask = executor.parentTask({ id: 'parent', timeoutMs: 1000, runParent: (ctx, input: { name: string }) => { return { output: `Hello from parent task, ${input.name}!`, childrenTasks: [ { task: taskA, input: { name: input.name }, }, { task: taskB, input: { name: input.name }, }, ], } }, }) // Input: { name: 'world' } // Output: { // output: 'Hello from parent task, world!', // childrenOutputs: [ // { output: 'Hello from task A, world!' }, // { output: 'Hello from task B, world!' }, // ], // } ``` ### Parent task with parallel children and combined output ```mermaid flowchart TD parentTask --> taskA parentTask --> taskB ``` The `finalizeTask` task is run after the `runParent` function and all the children tasks complete. It is useful for combining the output of the `runParent` function and children tasks. The output of the `finalizeTask` task is the output of the parent task. ```ts const taskA = executor.task({ id: 'a', timeoutMs: 1000, run: (ctx, input: { name: string }) => { return `Hello from task A, ${input.name}!` }, }) const taskB = executor.task({ id: 'b', timeoutMs: 1000, run: (ctx, input: { name: string }) => { return `Hello from task B, ${input.name}!` }, }) const parentTask = executor.parentTask({ id: 'parent', timeoutMs: 1000, runParent: (ctx, input: { name: string }) => { return { output: `Hello from parent task, ${input.name}!`, childrenTasks: [ { task: taskA, input: { name: input.name }, }, { task: taskB, input: { name: input.name }, }, ], } }, finalizeTask: { id: 'onParentRunAndChildrenComplete', timeoutMs: 1000, run: (ctx, { output, childrenTasksOutputs }) => { return { parentOutput: output, taskAOutput: childrenTasksOutputs[0]!.output as string, taskBOutput: childrenTasksOutputs[1]!.output as string, } }, }, }) // Input: { name: 'world' } // Output: { // parentOutput: 'Hello from parent task, world!', // taskAOutput: 'Hello from task A, world!', // taskBOutput: 'Hello from task B, world!', // } ``` ### Sequential tasks ```mermaid flowchart LR taskA --> taskB taskB --> taskC ``` Using the `sequentialTasks` method in the [DurableExecutor](https://gpahal.github.io/durable-execution/classes/DurableExecutor.html) class, you can create a sequential task that runs a list of tasks sequentially. The tasks list must be a list of tasks that are compatible with each other. The input of any task must be the same as the output of the previous task. The output of the last task will be the output of the sequential task. The tasks list cannot be empty. ```ts const taskA = executor.task({ id: 'a', timeoutMs: 1000, run: (ctx, input: { name: string }) => { return { name: input.name, taskAOutput: `Hello from task A, ${input.name}!`, } }, }) const taskB = executor.task({ id: 'b', timeoutMs: 1000, run: (ctx, input: { name: string; taskAOutput: string }) => { return { name: input.name, taskAOutput: input.taskAOutput, taskBOutput: `Hello from task B, ${input.name}!`, } }, }) const taskC = executor.task({ id: 'c', timeoutMs: 1000, run: (ctx, input: { name: string; taskAOutput: string; taskBOutput: string }) => { return { taskAOutput: input.taskAOutput, taskBOutput: input.taskBOutput, taskCOutput: `Hello from task C, ${input.name}!`, } }, }) const task = executor.sequentialTasks(taskA, taskB, taskC) // Input: { name: 'world' } // Output: { // taskAOutput: 'Hello from task A, world!', // taskBOutput: 'Hello from task B, world!', // taskCOutput: 'Hello from task C, world!', // } ``` ### Sequential tasks (manually) ```mermaid flowchart LR taskA --> taskB taskB --> taskC ``` The sequential tasks can also be created manually just by using the `parentTask` method. Although the `sequentialTasks` method is more convenient, it is useful to know how to create sequential tasks manually. The `finalizeTask` task can itself be a parent task with parallel children. This property can be used to spawn parallel children from the task `runParent` function and then using the `finalizeTask` task to run a sequential task. ```ts const taskC = executor.task({ id: 'c', timeoutMs: 1000, run: (ctx, input: { name: string }) => { return `Hello from task C, ${input.name}!` }, }) const taskB = executor.parentTask({ id: 'b', timeoutMs: 1000, runParent: (ctx, input: { name: string }) => { return { output: `Hello from task B, ${input.name}!`, } }, finalizeTask: { id: 'taskBFinalize', timeoutMs: 1000, runParent: (ctx, { input, output }) => { return { output, childrenTasks: [{ task: taskC, input: { name: input.name } }], } }, finalizeTask: { id: 'taskBFinalizeNested', timeoutMs: 1000, run: (ctx, { output, childrenTasksOutputs }) => { return { taskBOutput: output, taskCOutput: childrenTasksOutputs[0]!.output as string, } }, }, }, }) const taskA = executor.parentTask({ id: 'a', timeoutMs: 1000, runParent: (ctx, input: { name: string }) => { return { output: `Hello from task A, ${input.name}!`, } }, finalizeTask: { id: 'taskAFinalize', timeoutMs: 1000, runParent: (ctx, { input, output }) => { return { output, childrenTasks: [{ task: taskB, input: { name: input.name } }], } }, finalizeTask: { id: 'taskAFinalizeNested', timeoutMs: 1000, run: (ctx, { output, childrenTasksOutputs }) => { const taskBOutput = childrenTasksOutputs[0]!.output as { taskBOutput: string taskCOutput: string } return { taskAOutput: output, taskBOutput: taskBOutput.taskBOutput, taskCOutput: taskBOutput.taskCOutput, } }, }, }, }) // Input: { name: 'world' } // Output: { // taskAOutput: 'Hello from task A, world!', // taskBOutput: 'Hello from task B, world!', // taskCOutput: 'Hello from task C, world!', // } ``` ### Multiple parent tasks with parallel children run sequentially Here dotted lines represent the sequential execution of the tasks. ```mermaid flowchart TD taskA -. sequential .-> taskB taskA --> taskA1 taskA --> taskA2 taskB --> taskB1 taskB --> taskB2 ``` Similar to the sequential tasks example with `sequentialTasks` but with each task also having parallel children. ```ts const taskA1 = executor.task({ id: 'a1', timeoutMs: 1000, run: (ctx, input: { name: string }) => { return `Hello from task A1, ${input.name}!` }, }) const taskA2 = executor.task({ id: 'a2', timeoutMs: 1000, run: (ctx, input: { name: string }) => { return `Hello from task A2, ${input.name}!` }, }) const taskB1 = executor.task({ id: 'b1', timeoutMs: 1000, run: (ctx, input: { name: string }) => { return `Hello from task B1, ${input.name}!` }, }) const taskB2 = executor.task({ id: 'b2', timeoutMs: 1000, run: (ctx, input: { name: string }) => { return `Hello from task B2, ${input.name}!` }, }) const taskA = executor.parentTask({ id: 'a', timeoutMs: 1000, runParent: (ctx, input: { name: string }) => { return { output: `Hello from task A, ${input.name}!`, childrenTasks: [ { task: taskA1, input: { name: input.name } }, { task: taskA2, input: { name: input.name } }, ], } }, finalizeTask: { id: 'taskAFinalize', timeoutMs: 1000, run: (ctx, { input, output, childrenTasksOutputs }) => { return { name: input.name, taskAOutput: output, taskA1Output: childrenTasksOutputs[0]!.output as string, taskA2Output: childrenTasksOutputs[1]!.output as string, } }, }, }) const taskB = executor.parentTask({ id: 'b', timeoutMs: 1000, runParent: ( ctx, input: { name: string; taskAOutput: string; taskA1Output: string; taskA2Output: string }, ) => { return { output: { taskAOutput: input.taskAOutput, taskA1Output: input.taskA1Output, taskA2Output: input.taskA2Output, taskBOutput: `Hello from task B, ${input.name}!`, }, childrenTasks: [ { task: taskB1, input: { name: input.name } }, { task: taskB2, input: { name: input.name } }, ], } }, finalizeTask: { id: 'taskBFinalize', timeoutMs: 1000, run: (ctx, { output, childrenTasksOutputs }) => { return { ...output, taskB1Output: childrenTasksOutputs[0]!.output as string, taskB2Output: childrenTasksOutputs[1]!.output as string, } }, }, }) // Input: { name: 'world' } // Output: { // taskAOutput: 'Hello from task A, world!', // taskA1Output: 'Hello from task A1, world!', // taskA2Output: 'Hello from task A2, world!', // taskBOutput: 'Hello from task B, world!', // taskB1Output: 'Hello from task B1, world!', // taskB2Output: 'Hello from task B2, world!', // } ``` ### Task tree ```mermaid flowchart TD rootTask --> taskA rootTask --> taskB1 taskA --> taskA1 taskA --> taskA2 taskA --> taskA3 taskB1 --> taskB2 taskB2 --> taskB3 ``` Parallel and sequential tasks can be combined to create a tree of tasks. ```ts const taskB1 = executor.task({ id: 'b1', timeoutMs: 1000, run: (ctx, input: { name: string }) => { return { name: input.name, taskB1Output: `Hello from task B1, ${input.name}!`, } }, }) const taskB2 = executor.task({ id: 'b2', timeoutMs: 1000, run: (ctx, input: { name: string; taskB1Output: string }) => { return { name: input.name, taskB1Output: input.taskB1Output, taskB2Output: `Hello from task B2, ${input.name}!`, } }, }) const taskB3 = executor.task({ id: 'b3', timeoutMs: 1000, run: (ctx, input: { name: string; taskB1Output: string; taskB2Output: string }) => { return { taskB1Output: input.taskB1Output, taskB2Output: input.taskB2Output, taskB3Output: `Hello from task B3, ${input.name}!`, } }, }) const taskB = executor.sequentialTasks(taskB1, taskB2, taskB3) const taskA1 = executor.task({ id: 'a1', timeoutMs: 1000, run: (ctx, input: { name: string }) => { return `Hello from task A1, ${input.name}!` }, }) const taskA2 = executor.task({ id: 'a2', timeoutMs: 1000, run: (ctx, input: { name: string }) => { return `Hello from task A2, ${input.name}!` }, }) const taskA3 = executor.task({ id: 'a3', timeoutMs: 1000, run: (ctx, input: { name: string }) => { return `Hello from task A3, ${input.name}!` }, }) const taskA = executor.parentTask({ id: 'a', timeoutMs: 1000, runParent: (ctx, input: { name: string }) => { return { output: `Hello from task A, ${input.name}!`, childrenTasks: [ { task: taskA1, input: { name: input.name } }, { task: taskA2, input: { name: input.name } }, { task: taskA3, input: { name: input.name } }, ], } }, finalizeTask: { id: 'taskAFinalize', timeoutMs: 1000, run: (ctx, { output, childrenTasksOutputs }) => { return { taskAOutput: output, taskA1Output: childrenTasksOutputs[0]!.output as string, taskA2Output: childrenTasksOutputs[1]!.output as string, taskA3Output: childrenTasksOutputs[2]!.output as string, } }, }, }) const rootTask = executor.parentTask({ id: 'root', timeoutMs: 1000, runParent: (ctx, input: { name: string }) => { return { output: `Hello from root task, ${input.name}!`, childrenTasks: [ { task: taskA, input: { name: input.name } }, { task: taskB, input: { name: input.name } }, ], } }, finalizeTask: { id: 'rootFinalize', timeoutMs: 1000, run: (ctx, { output, childrenTasksOutputs }) => { const taskAOutput = childrenTasksOutputs[0]!.output as { taskAOutput: string taskA1Output: string taskA2Output: string taskA3Output: string } const taskBOutput = childrenTasksOutputs[1]!.output as { taskB1Output: string taskB2Output: string taskB3Output: string } return { rootOutput: output, taskAOutput: taskAOutput.taskAOutput, taskA1Output: taskAOutput.taskA1Output, taskA2Output: taskAOutput.taskA2Output, taskA3Output: taskAOutput.taskA3Output, taskB1Output: taskBOutput.taskB1Output, taskB2Output: taskBOutput.taskB2Output, taskB3Output: taskBOutput.taskB3Output, } }, }, }) // Input: { name: 'world' } // Output: { // rootOutput: 'Hello from root task, world!', // taskAOutput: 'Hello from task A, world!', // taskA1Output: 'Hello from task A1, world!', // taskA2Output: 'Hello from task A2, world!', // taskA3Output: 'Hello from task A3, world!', // taskB1Output: 'Hello from task B1, world!', // taskB2Output: 'Hello from task B2, world!', // taskB3Output: 'Hello from task B3, world!', // } ``` ### Recursive task Recursive tasks require some type annotations to be able to infer the input and output types, since we are using the same variable inside the `runParent` function. Use the `finalizeTask` task to coordinate the output of the recursive task and children tasks. ```ts const recursiveTask: DurableTask<{ index: number }, { count: number }> = executor .inputSchema(z.object({ index: z.number().int().min(0) })) .parentTask({ id: 'recursive', timeoutMs: 1000, runParent: async (ctx, input) => { await sleep(1) return { output: undefined, childrenTasks: input.index >= 9 ? [] : [{ task: recursiveTask, input: { index: input.index + 1 } }], } }, finalizeTask: { id: 'recursiveFinalize', timeoutMs: 1000, run: (ctx, { childrenTasksOutputs }) => { return { count: 1 + childrenTasksOutputs.reduce( (acc, childOutput) => acc + (childOutput.output as { count: number }).count, 0, ), } }, }, }) // Input: { index: 0 } // Output: { // count: 10, // } ``` ### Polling task Polling tasks are useful when you want to wait for a value to be available. The `sleepMsBeforeRun` option is used to wait for a certain amount of time before attempting to get the value again. The `finalizeTask` task is used to combine the output of the polling task and children tasks. ```ts let value: number | undefined setTimeout(() => { value = 10 }, 2000) const pollingTask: DurableTask<{ prevCount: number }, { count: number; value: number }> = executor.inputSchema(z.object({ prevCount: z.number().int().min(0) })).parentTask({ id: 'polling', sleepMsBeforeRun: 100, timeoutMs: 1000, runParent: (ctx, input) => { if (value != null) { return { output: { isDone: true, value, } as { isDone: false; value: undefined } | { isDone: true; value: number }, } } return { output: { isDone: false, value, } as { isDone: false; value: undefined } | { isDone: true; value: number }, childrenTasks: [{ task: pollingTask, input: { prevCount: input.prevCount + 1 } }], } }, finalizeTask: { id: 'pollingFinalize', timeoutMs: 1000, run: (ctx, { input, output, childrenTasksOutputs }) => { if (output.isDone) { return { count: input.prevCount + 1, value: output.value, } } return childrenTasksOutputs[0]!.output as { count: number value: number } }, }, }) // Input: { prevCount: 0 } // Output: { // count: 15, // Can be anywhere between 10 and 20 depending on when tasks are picked // value: 10, // } ``` ## Design ### Durable task execution The following diagram shows the internal state transition of the durable task execution once it is enqueued till it's run function completes. ```mermaid flowchart TD A[Enqueue task]-->B[status=ready<br/>isClosed=false] B-->C[status=running] C-->|run function failed| D[status=failed] C-->|run function timed out| E[status=timed_out] C-->|run function completed| F(See the diagram below) D-->|close| Z[isClosed=true] E-->|close| Z ``` The following diagram shows the internal state transition of the durable task execution once it's run function completes. ```mermaid flowchart TD A[Run function completed]-->B{Did task return children?} B-->|Yes| C[status=waiting_for_children_tasks] C-->|One or more children failed| D[status=children_tasks_failed] C-->|All children completed| E{Does task have finalizeTask?} E-->|Yes| F[status=waiting_for_finalize_task] E-->|No| G[status=completed] F-->|finalizeTask failed| H[status=finalize_task_failed] F-->|finalizeTask completed| G B-->|No| E D-->|close| Z[isClosed=true] G-->|close| Z H-->|close| Z ``` A task is considered finished when it's in one of the following states: - completed - failed - timed_out - children_tasks_failed - finalize_task_failed - cancelled If a task is in any other state, it can be cancelled. The task will be marked as cancelled and closed. See the [cancellation](#cancellation) section for more details. Once a task is finished, it goes through a closure process. It happens in the background. These are the steps that happen during the closure process: #### If the task completed successfully - If the task has a parent task, and all other siblings of the current task have also completed, the parent task is marked as completed if it doesn't have a finalizeTask task. If the parent task has a `finalizeTask` task, the parent task is marked as `waiting_for_finalize_task` and the `finalizeTask` task is enqueued - If the task was a `finalizeTask` task, the parent task is marked as completed #### If the task failed for any reason - If the task has a parent task and the parent task is still waiting for children to complete, the parent task is marked as failed. If the parent task has already failed, nothing happens - If the task has children, all of children which haven't finished are cancelled - If the task was a `finalizeTask` task, the parent task is marked as `finalize_task_failed` ### Cancellation When a task execution is cancelled, the task execution status is marked as cancelled and the `needsPromiseCancellation` field is set to `true`. A background process will cancel the task execution if the `needsPromiseCancellation` field is set to `true` and the executor was the one running the task run function. This ensures that if there are multiple durable executors with the same storage, the cancellation will be propagated to all the durable executors and whichever durable executor is running the task run function will cancel it. After cancellation, the closure process happens as described above. ### Resilience from process failures When a task execution status is marked as running, the `expiresAt` field is set based on the timeout of the task plus some leeway. When the expiration background process runs, it will check if the task execution is still in the running state after the expiration time, and if it is it will be marked as ready to run again. This ensures that the task execution is resilient to process failures. If a process never fails during the execution, the task execution will end up in a finished state. Only in the case of a process failure, the task execution will be in running state beyong it's timeout. ### Shutdown On shutdown, these happen in this order: - Stop enqueuing new tasks - Stop background processes after the current iteration - Wait for active task executions to finish. Task execution context contains a shutdown signal that can be used to gracefully shutdown the task when executor is shutting down ## License This project is licensed under the MIT License. See the [LICENSE](https://github.com/gpahal/durable-execution/blob/main/LICENSE) file for details.