doubly-linked-list-typed
Version:
Doubly Linked List
950 lines (881 loc) • 35.5 kB
text/typescript
/**
* data-structure-typed
*
* @author Pablo Zeng
* @copyright Copyright (c) 2022 Pablo Zeng <zrwusa@gmail.com>
* @license MIT License
*/
import type { DequeOptions, ElementCallback, IterableWithSizeOrLength } from '../../types';
import { calcMinUnitsRequired, rangeCheck } from '../../utils';
import { LinearBase } from '../base/linear-base';
/**
* 1. Operations at Both Ends: Supports adding and removing elements at both the front and back of the queue. This allows it to be used as a stack (last in, first out) and a queue (first in, first out).
* 2. Efficient Random Access: Being based on an array, it offers fast random access capability, allowing constant time access to any element.
* 3. Continuous Memory Allocation: Since it is based on an array, all elements are stored contiguously in memory, which can bring cache friendliness and efficient memory access.
* 4. Efficiency: Adding and removing elements at both ends of a deque is usually very fast. However, when the dynamic array needs to expand, it may involve copying the entire array to a larger one, and this operation has a time complexity of O(n).
* 5. Performance jitter: Deque may experience performance jitter, but DoublyLinkedList will not
* @example
* // prize roulette
* class PrizeRoulette {
* private deque: Deque<string>;
*
* constructor(prizes: string[]) {
* // Initialize the deque with prizes
* this.deque = new Deque<string>(prizes);
* }
*
* // Rotate clockwise to the right (forward)
* rotateClockwise(steps: number): void {
* const n = this.deque.length;
* if (n === 0) return;
*
* for (let i = 0; i < steps; i++) {
* const last = this.deque.pop(); // Remove the last element
* this.deque.unshift(last!); // Add it to the front
* }
* }
*
* // Rotate counterclockwise to the left (backward)
* rotateCounterClockwise(steps: number): void {
* const n = this.deque.length;
* if (n === 0) return;
*
* for (let i = 0; i < steps; i++) {
* const first = this.deque.shift(); // Remove the first element
* this.deque.push(first!); // Add it to the back
* }
* }
*
* // Display the current prize at the head
* display() {
* return this.deque.first;
* }
* }
*
* // Example usage
* const prizes = ['Car', 'Bike', 'Laptop', 'Phone', 'Watch', 'Headphones']; // Initialize the prize list
* const roulette = new PrizeRoulette(prizes);
*
* // Display the initial state
* console.log(roulette.display()); // 'Car' // Car
*
* // Rotate clockwise by 3 steps
* roulette.rotateClockwise(3);
* console.log(roulette.display()); // 'Phone' // Phone
*
* // Rotate counterclockwise by 2 steps
* roulette.rotateCounterClockwise(2);
* console.log(roulette.display()); // 'Headphones'
* @example
* // sliding window
* // Maximum function of sliding window
* function maxSlidingWindow(nums: number[], k: number): number[] {
* const n = nums.length;
* if (n * k === 0) return [];
*
* const deq = new Deque<number>();
* const result: number[] = [];
*
* for (let i = 0; i < n; i++) {
* // Delete indexes in the queue that are not within the window range
* if (deq.length > 0 && deq.first! === i - k) {
* deq.shift();
* }
*
* // Remove all indices less than the current value from the tail of the queue
* while (deq.length > 0 && nums[deq.last!] < nums[i]) {
* deq.pop();
* }
*
* // Add the current index to the end of the queue
* deq.push(i);
*
* // Add the maximum value of the window to the results
* if (i >= k - 1) {
* result.push(nums[deq.first!]);
* }
* }
*
* return result;
* }
*
* const nums = [1, 3, -1, -3, 5, 3, 6, 7];
* const k = 3;
* console.log(maxSlidingWindow(nums, k)); // [3, 3, 5, 5, 6, 7]
*/
export class Deque<E = any, R = any> extends LinearBase<E, R> {
/**
* The constructor initializes a Deque object with optional iterable of elements and options.
* @param elements - An iterable object (such as an array or a Set) that contains the initial
* elements to be added to the deque. It can also be an object with a `length` or `size` property
* that represents the number of elements in the iterable object. If no elements are provided, an
* empty deque
* @param {DequeOptions} [options] - The `options` parameter is an optional object that can contain
* configuration options for the deque. In this code, it is used to set the `bucketSize` option,
* which determines the size of each bucket in the deque. If the `bucketSize` option is not provided
* or is not a number
*/
constructor(elements: IterableWithSizeOrLength<E> | IterableWithSizeOrLength<R> = [], options?: DequeOptions<E, R>) {
super(options);
if (options) {
const { bucketSize } = options;
if (typeof bucketSize === 'number') this._bucketSize = bucketSize;
}
let _size: number;
if ('length' in elements) {
if (elements.length instanceof Function) _size = elements.length();
else _size = elements.length;
} else {
if (elements.size instanceof Function) _size = elements.size();
else _size = elements.size;
}
this._bucketCount = calcMinUnitsRequired(_size, this._bucketSize) || 1;
for (let i = 0; i < this._bucketCount; ++i) {
this._buckets.push(new Array(this._bucketSize));
}
const needBucketNum = calcMinUnitsRequired(_size, this._bucketSize);
this._bucketFirst = this._bucketLast = (this._bucketCount >> 1) - (needBucketNum >> 1);
this._firstInBucket = this._lastInBucket = (this._bucketSize - (_size % this._bucketSize)) >> 1;
this.pushMany(elements);
}
protected _bucketSize: number = 1 << 12;
get bucketSize() {
return this._bucketSize;
}
protected _bucketFirst = 0;
get bucketFirst(): number {
return this._bucketFirst;
}
protected _firstInBucket = 0;
get firstInBucket(): number {
return this._firstInBucket;
}
protected _bucketLast = 0;
get bucketLast(): number {
return this._bucketLast;
}
protected _lastInBucket = 0;
get lastInBucket(): number {
return this._lastInBucket;
}
protected _bucketCount = 0;
get bucketCount(): number {
return this._bucketCount;
}
protected _buckets: E[][] = [];
get buckets() {
return this._buckets;
}
protected _length = 0;
get length() {
return this._length;
}
/**
* The function returns the first element in a collection if it exists, otherwise it returns
* undefined.
* @returns The first element of the collection, of type E, is being returned.
*/
get first(): E | undefined {
if (this._length === 0) return;
return this._buckets[this._bucketFirst][this._firstInBucket];
}
/**
* The last function returns the last element in the queue.
* @return The last element in the array
*/
get last(): E | undefined {
if (this._length === 0) return;
return this._buckets[this._bucketLast][this._lastInBucket];
}
/**
* Time Complexity - Amortized O(1) (possible reallocation),
* Space Complexity - O(n) (due to potential resizing).
*
* The push function adds an element to a data structure and reallocates memory if necessary.
* @param {E} element - The `element` parameter represents the value that you want to add to the data
* structure.
* @returns The size of the data structure after the element has been pushed.
*/
push(element: E): boolean {
if (this._length) {
if (this._lastInBucket < this._bucketSize - 1) {
this._lastInBucket += 1;
} else if (this._bucketLast < this._bucketCount - 1) {
this._bucketLast += 1;
this._lastInBucket = 0;
} else {
this._bucketLast = 0;
this._lastInBucket = 0;
}
if (this._bucketLast === this._bucketFirst && this._lastInBucket === this._firstInBucket) this._reallocate();
}
this._length += 1;
this._buckets[this._bucketLast][this._lastInBucket] = element;
if (this._maxLen > 0 && this._length > this._maxLen) this.shift();
return true;
}
/**
* Time Complexity: O(1)
* Space Complexity: O(1)
*
* The `pop()` function removes and returns the last element from a data structure, updating the
* internal state variables accordingly.
* @returns The element that was removed from the data structure is being returned.
*/
pop(): E | undefined {
if (this._length === 0) return;
const element = this._buckets[this._bucketLast][this._lastInBucket];
if (this._length !== 1) {
if (this._lastInBucket > 0) {
this._lastInBucket -= 1;
} else if (this._bucketLast > 0) {
this._bucketLast -= 1;
this._lastInBucket = this._bucketSize - 1;
} else {
this._bucketLast = this._bucketCount - 1;
this._lastInBucket = this._bucketSize - 1;
}
}
this._length -= 1;
return element;
}
/**
* Time Complexity: O(1)
* Space Complexity: O(1)
*
* The `shift()` function removes and returns the first element from a data structure, updating the
* internal state variables accordingly.
* @returns The element that is being removed from the beginning of the data structure is being
* returned.
*/
shift(): E | undefined {
if (this._length === 0) return;
const element = this._buckets[this._bucketFirst][this._firstInBucket];
if (this._length !== 1) {
if (this._firstInBucket < this._bucketSize - 1) {
this._firstInBucket += 1;
} else if (this._bucketFirst < this._bucketCount - 1) {
this._bucketFirst += 1;
this._firstInBucket = 0;
} else {
this._bucketFirst = 0;
this._firstInBucket = 0;
}
}
this._length -= 1;
return element;
}
/**
* Time Complexity: Amortized O(1)
* Space Complexity: O(n)
*
* The `unshift` function adds an element to the beginning of an array-like data structure and
* returns the new size of the structure.
* @param {E} element - The `element` parameter represents the element that you want to add to the
* beginning of the data structure.
* @returns The size of the data structure after the element has been added.
*/
unshift(element: E): boolean {
if (this._length) {
if (this._firstInBucket > 0) {
this._firstInBucket -= 1;
} else if (this._bucketFirst > 0) {
this._bucketFirst -= 1;
this._firstInBucket = this._bucketSize - 1;
} else {
this._bucketFirst = this._bucketCount - 1;
this._firstInBucket = this._bucketSize - 1;
}
if (this._bucketFirst === this._bucketLast && this._firstInBucket === this._lastInBucket) this._reallocate();
}
this._length += 1;
this._buckets[this._bucketFirst][this._firstInBucket] = element;
if (this._maxLen > 0 && this._length > this._maxLen) this.pop();
return true;
}
/**
* Time Complexity: O(k)
* Space Complexity: O(k)
*
* The function `pushMany` iterates over elements and pushes them into an array after applying a
* transformation function if provided.
* @param {IterableWithSizeOrLength<E> | IterableWithSizeOrLength<R>} elements - The `elements`
* parameter in the `pushMany` function is expected to be an iterable containing elements of type `E`
* or `R`. It can be either an `IterableWithSizeOrLength<E>` or an `IterableWithSizeOrLength<R>`. The
* function iterates over each element
* @returns The `pushMany` function is returning an array of boolean values, where each value
* represents the result of calling the `push` method on the current object instance with the
* corresponding element from the input `elements` iterable.
*/
pushMany(elements: IterableWithSizeOrLength<E> | IterableWithSizeOrLength<R>) {
const ans: boolean[] = [];
for (const el of elements) {
if (this.toElementFn) {
ans.push(this.push(this.toElementFn(el as R)));
} else {
ans.push(this.push(el as E));
}
}
return ans;
}
/**
* Time Complexity: O(k)
* Space Complexity: O(k)
*
* The `unshiftMany` function in TypeScript iterates over elements and adds them to the beginning of
* an array, optionally converting them using a provided function.
* @param {IterableWithSizeOrLength<E> | IterableWithSizeOrLength<R>} elements - The `elements`
* parameter in the `unshiftMany` function is an iterable containing elements of type `E` or `R`. It
* can be an array or any other iterable data structure that has a known size or length. The function
* iterates over each element in the `elements` iterable and
* @returns The `unshiftMany` function returns an array of boolean values indicating whether each
* element was successfully added to the beginning of the array.
*/
unshiftMany(elements: IterableWithSizeOrLength<E> | IterableWithSizeOrLength<R> = []) {
const ans: boolean[] = [];
for (const el of elements) {
if (this.toElementFn) {
ans.push(this.unshift(this.toElementFn(el as R)));
} else {
ans.push(this.unshift(el as E));
}
}
return ans;
}
/**
* Time Complexity: O(1)
* Space Complexity: O(1)
*
* The function checks if the size of an object is equal to zero and returns a boolean value.
* @returns A boolean value indicating whether the size of the object is 0 or not.
*/
isEmpty(): boolean {
return this._length === 0;
}
/**
* Time Complexity: O(1)
* Space Complexity: O(1)
*
* The clear() function resets the state of the object by initializing all variables to their default
* values.
*/
clear(): void {
this._buckets = [new Array(this._bucketSize)];
this._bucketCount = 1;
this._bucketFirst = this._bucketLast = this._length = 0;
this._firstInBucket = this._lastInBucket = this._bucketSize >> 1;
}
/**
* Time Complexity: O(1)
* Space Complexity: O(1)
*
* The `at` function retrieves an element at a specified position in an array-like data structure.
* @param {number} pos - The `pos` parameter represents the position of the element that you want to
* retrieve from the data structure. It is of type `number` and should be a valid index within the
* range of the data structure.
* @returns The element at the specified position in the data structure is being returned.
*/
at(pos: number): E {
rangeCheck(pos, 0, this._length - 1);
const { bucketIndex, indexInBucket } = this._getBucketAndPosition(pos);
return this._buckets[bucketIndex][indexInBucket]!;
}
/**
* Time Complexity: O(1)
* Space Complexity: O(1)
*
* The `setAt` function sets an element at a specific position in an array-like data structure.
* @param {number} pos - The `pos` parameter represents the position at which the element needs to be
* set. It is of type `number`.
* @param {E} element - The `element` parameter is the value that you want to set at the specified
* position in the data structure.
*/
setAt(pos: number, element: E): boolean {
rangeCheck(pos, 0, this._length - 1);
const { bucketIndex, indexInBucket } = this._getBucketAndPosition(pos);
this._buckets[bucketIndex][indexInBucket] = element;
return true;
}
/**
* Time Complexity: O(n)
* Space Complexity: O(n)
*
* The `addAt` function inserts one or more elements at a specified position in an array-like data
* structure.
* @param {number} pos - The `pos` parameter represents the position at which the element(s) should
* be inserted. It is of type `number`.
* @param {E} element - The `element` parameter represents the element that you want to insert into
* the array at the specified position.
* @param [num=1] - The `num` parameter represents the number of times the `element` should be
* inserted at the specified position (`pos`). By default, it is set to 1, meaning that the `element`
* will be inserted once. However, you can provide a different value for `num` if you want
* @returns The size of the array after the insertion is being returned.
*/
addAt(pos: number, element: E, num = 1): boolean {
const length = this._length;
rangeCheck(pos, 0, length);
if (pos === 0) {
while (num--) this.unshift(element);
} else if (pos === this._length) {
while (num--) this.push(element);
} else {
const arr: E[] = [];
for (let i = pos; i < this._length; ++i) {
arr.push(this.at(i));
}
this.cut(pos - 1, true);
for (let i = 0; i < num; ++i) this.push(element);
for (let i = 0; i < arr.length; ++i) this.push(arr[i]);
}
return true;
}
/**
* Time Complexity: O(1)
* Space Complexity: O(1)
*
* The `cut` function updates the state of the object based on the given position and returns the
* updated size.
* @param {number} pos - The `pos` parameter represents the position at which the string should be
* cut. It is a number that indicates the index of the character where the cut should be made.
* @param {boolean} isCutSelf - If true, the original deque will not be cut, and return a new deque
* @returns The method is returning the updated size of the data structure.
*/
cut(pos: number, isCutSelf = false): Deque<E> {
if (isCutSelf) {
if (pos < 0) {
this.clear();
return this;
}
const { bucketIndex, indexInBucket } = this._getBucketAndPosition(pos);
this._bucketLast = bucketIndex;
this._lastInBucket = indexInBucket;
this._length = pos + 1;
return this;
} else {
const newDeque = this._createInstance({
bucketSize: this._bucketSize,
toElementFn: this._toElementFn,
maxLen: this._maxLen
});
for (let i = 0; i <= pos; i++) {
newDeque.push(this.at(i));
}
return newDeque;
}
}
/**
* Time Complexity: O(n)
* Space Complexity: O(1)
*
* The `splice` function in TypeScript overrides the default behavior to remove and insert elements
* in a Deque data structure while ensuring the starting position and delete count are within bounds.
* @param {number} start - The `start` parameter in the `splice` method represents the index at which
* to start changing the array. Items will be removed or added starting from this index.
* @param {number} deleteCount - The `deleteCount` parameter in the `splice` method represents the
* number of elements to remove from the array starting at the specified `start` index. If
* `deleteCount` is not provided, it defaults to the number of elements from the `start` index to the
* end of the array (`
* @param {E[]} items - The `items` parameter in the `splice` method represents the elements that
* will be inserted into the deque at the specified `start` index. These elements will be inserted in
* place of the elements that are removed based on the `start` and `deleteCount` parameters.
* @returns The `splice` method is returning the array `deletedElements` which contains the elements
* that were removed from the Deque during the splice operation.
*/
override splice(start: number, deleteCount: number = this._length - start, ...items: E[]): this {
// Check whether the starting position is legal
rangeCheck(start, 0, this._length);
// Adjust the value of deleteCount
if (deleteCount < 0) deleteCount = 0;
if (start + deleteCount > this._length) deleteCount = this._length - start;
// Save deleted elements
const deletedElements = this._createInstance();
// Add removed elements to the result
for (let i = 0; i < deleteCount; i++) {
deletedElements.push(this.at(start + i));
}
// Calculate the range that needs to be deleted
const elementsAfter = [];
for (let i = start + deleteCount; i < this._length; i++) {
elementsAfter.push(this.at(i));
}
// Adjust the length of the current Deque
this.cut(start - 1, true);
for (const item of items) {
this.push(item);
}
// Insert subsequent elements back
for (const element of elementsAfter) {
this.push(element);
}
return deletedElements;
}
/**
* Time Complexity: O(1)
* Space Complexity: O(1) or O(n)
*
* The `cutRest` function cuts the elements from a specified position in a deque and returns a new
* deque with the cut elements.
* @param {number} pos - The `pos` parameter represents the position from which to cut the Deque. It
* is a number that indicates the index of the element in the Deque where the cut should start.
* @param [isCutSelf=false] - isCutSelf is a boolean parameter that determines whether the original
* Deque should be modified or a new Deque should be created. If isCutSelf is true, the original
* Deque will be modified by cutting off elements starting from the specified position. If isCutSelf
* is false, a new De
* @returns The function `cutRest` returns either the modified original deque (`this`) or a new deque
* (`newDeque`) depending on the value of the `isCutSelf` parameter.
*/
cutRest(pos: number, isCutSelf = false): Deque<E> {
if (isCutSelf) {
if (pos < 0) {
return this;
}
const { bucketIndex, indexInBucket } = this._getBucketAndPosition(pos);
this._bucketFirst = bucketIndex;
this._firstInBucket = indexInBucket;
this._length = this._length - pos;
return this;
} else {
const newDeque = this._createInstance({
bucketSize: this._bucketSize,
toElementFn: this._toElementFn,
maxLen: this._maxLen
});
if (pos < 0) pos = 0;
for (let i = pos; i < this._length; i++) {
newDeque.push(this.at(i));
}
return newDeque;
}
}
/**
* Time Complexity: O(n)
* Space Complexity: O(1) or O(n)
*
* The `deleteAt` function removes an element at a specified position in an array-like data
* structure.
* @param {number} pos - The `pos` parameter in the `deleteAt` function represents the position at
* which an element needs to be deleted from the data structure. It is of type `number` and indicates
* the index of the element to be deleted.
* @returns The size of the data structure after the deletion operation is performed.
*/
deleteAt(pos: number): E | undefined {
rangeCheck(pos, 0, this._length - 1);
let deleted: E | undefined;
if (pos === 0) {
//If it is the first element, use shift() directly
return this.shift();
} else if (pos === this._length - 1) {
// If it is the last element, just use pop()
deleted = this.last;
this.pop();
return deleted;
} else {
// Delete the middle element
const length = this._length - 1;
const { bucketIndex: targetBucket, indexInBucket: targetPointer } = this._getBucketAndPosition(pos);
deleted = this._buckets[targetBucket][targetPointer];
for (let i = pos; i < length; i++) {
const { bucketIndex: curBucket, indexInBucket: curPointer } = this._getBucketAndPosition(i);
const { bucketIndex: nextBucket, indexInBucket: nextPointer } = this._getBucketAndPosition(i + 1);
this._buckets[curBucket][curPointer] = this._buckets[nextBucket][nextPointer];
}
// Remove last duplicate element
this.pop();
return deleted;
}
}
/**
* Time Complexity: O(n)
* Space Complexity: O(1)
*
* The `delete` function removes all occurrences of a specified element from an array-like data
* structure.
* @param {E} element - The `element` parameter represents the element that you want to delete from
* the data structure.
* @returns The size of the data structure after the element has been deleted.
*/
delete(element: E): boolean {
const size = this._length;
if (size === 0) return false;
let i = 0;
let index = 0;
while (i < size) {
const oldElement = this.at(i);
if (oldElement !== element) {
this.setAt(index, oldElement!);
index += 1;
}
i += 1;
}
this.cut(index - 1, true);
return true;
}
// /**
// * Time Complexity: O(n)
// * Space Complexity: O(1)
// *
// * This function overrides the indexOf method to search for an element within a custom data
// * structure.
// * @param {E} searchElement - The `searchElement` parameter is the element that you are searching for
// * within the data structure. The `indexOf` method will return the index of the first occurrence of
// * this element within the data structure.
// * @param {number} [fromIndex=0] - The `fromIndex` parameter in the `indexOf` method specifies the
// * index at which to start searching for the `searchElement` within the data structure. If provided,
// * the search will begin at this index instead of the beginning of the data structure.
// * @returns The indexOf method is returning the index of the searchElement if it is found in the data
// * structure, or -1 if the searchElement is not found.
// */
// override indexOf(searchElement: E, fromIndex: number = 0): number {
// let index = fromIndex;
// let bucketIndex = this._bucketFirst;
// let indexInBucket = this._firstInBucket + fromIndex;
//
// for (let i = 0; i < this._length; i++) {
// if (this._buckets[bucketIndex][indexInBucket] === searchElement) {
// return index;
// }
// index++;
// indexInBucket++;
// if (indexInBucket >= this._bucketSize) {
// bucketIndex++;
// indexInBucket = 0;
// }
// if (bucketIndex >= this._bucketCount) {
// bucketIndex = 0;
// }
// }
// return -1;
// }
/**
* Time Complexity: O(n)
* Space Complexity: O(1)
*
* The reverse() function reverses the order of the buckets and the elements within each bucket in a
* data structure.
* @returns The reverse() method is returning the object itself (this) after performing the reverse
* operation on the buckets and updating the relevant properties.
*/
reverse(): this {
this._buckets.reverse().forEach(function (bucket) {
bucket.reverse();
});
const { _bucketFirst, _bucketLast, _firstInBucket, _lastInBucket } = this;
this._bucketFirst = this._bucketCount - _bucketLast - 1;
this._bucketLast = this._bucketCount - _bucketFirst - 1;
this._firstInBucket = this._bucketSize - _lastInBucket - 1;
this._lastInBucket = this._bucketSize - _firstInBucket - 1;
return this;
}
/**
* Time Complexity: O(n)
* Space Complexity: O(1)
*
* The `unique()` function removes duplicate elements from an array-like data structure and returns
* the number of unique elements.
* @returns The size of the modified array is being returned.
*/
unique(): this {
if (this._length <= 1) {
return this;
}
let index = 1;
let prev = this.at(0);
for (let i = 1; i < this._length; ++i) {
const cur = this.at(i);
if (cur !== prev) {
prev = cur;
this.setAt(index++, cur);
}
}
this.cut(index - 1, true);
return this;
}
/**
* Time Complexity: O(n)
* Space Complexity: O(n)
*
* The `shrinkToFit` function reorganizes the elements in an array-like data structure to minimize
* memory usage.
* @returns Nothing is being returned. The function is using the `return` statement to exit early if
* `this._length` is 0, but it does not return any value.
*/
shrinkToFit(): void {
if (this._length === 0) return;
const newBuckets = [];
if (this._bucketFirst === this._bucketLast) return;
else if (this._bucketFirst < this._bucketLast) {
for (let i = this._bucketFirst; i <= this._bucketLast; ++i) {
newBuckets.push(this._buckets[i]);
}
} else {
for (let i = this._bucketFirst; i < this._bucketCount; ++i) {
newBuckets.push(this._buckets[i]);
}
for (let i = 0; i <= this._bucketLast; ++i) {
newBuckets.push(this._buckets[i]);
}
}
this._bucketFirst = 0;
this._bucketLast = newBuckets.length - 1;
this._buckets = newBuckets;
}
/**
* Time Complexity: O(n)
* Space Complexity: O(n)
*
* The `clone()` function returns a new instance of the `Deque` class with the same elements and
* bucket size as the original instance.
* @returns The `clone()` method is returning a new instance of the `Deque` class with the same
* elements as the original deque (`this`) and the same bucket size.
*/
clone(): this {
return new Deque<E, R>(this, {
bucketSize: this.bucketSize,
toElementFn: this.toElementFn,
maxLen: this._maxLen
}) as this;
}
/**
* Time Complexity: O(n)
* Space Complexity: O(n)
*
* The `filter` function creates a new deque containing elements from the original deque that satisfy
* a given predicate function.
* @param predicate - The `predicate` parameter is a callback function that takes three arguments:
* the current element being iterated over, the index of the current element, and the deque itself.
* It should return a boolean value indicating whether the element should be included in the filtered
* deque or not.
* @param {any} [thisArg] - The `thisArg` parameter is an optional argument that specifies the value
* to be used as `this` when executing the `predicate` function. If `thisArg` is provided, it will be
* passed as the `this` value to the `predicate` function. If `thisArg` is
* @returns The `filter` method is returning a new `Deque` object that contains the elements that
* satisfy the given predicate function.
*/
filter(predicate: ElementCallback<E, R, boolean>, thisArg?: any): Deque<E, R> {
const newDeque = this._createInstance({
bucketSize: this._bucketSize,
toElementFn: this.toElementFn,
maxLen: this._maxLen
});
let index = 0;
for (const el of this) {
if (predicate.call(thisArg, el, index, this)) {
newDeque.push(el);
}
index++;
}
return newDeque;
}
/**
* Time Complexity: O(n)
* Space Complexity: O(n)
*
* The `map` function takes a callback function and applies it to each element in the deque,
* returning a new deque with the results.
* @param callback - The callback parameter is a function that will be called for each element in the
* deque. It takes three arguments: the current element, the index of the element, and the deque
* itself. It should return a value of type EM.
* @param [toElementFn] - The `toElementFn` parameter is an optional function that can be used to
* transform the raw element (`RM`) into a new element (`EM`) before adding it to the new deque. If
* provided, this function will be called for each raw element in the original deque.
* @param {any} [thisArg] - The `thisArg` parameter is an optional argument that allows you to
* specify the value of `this` within the callback function. It is used to set the context or scope
* in which the callback function will be executed. If `thisArg` is provided, it will be used as the
* value of
* @returns a new Deque object with elements of type EM and raw elements of type RM.
*/
map<EM, RM>(callback: ElementCallback<E, R, EM>, toElementFn?: (rawElement: RM) => EM, thisArg?: any): Deque<EM, RM> {
const newDeque = new Deque<EM, RM>([], { bucketSize: this._bucketSize, toElementFn, maxLen: this._maxLen });
let index = 0;
for (const el of this) {
newDeque.push(callback.call(thisArg, el, index, this));
index++;
}
return newDeque;
}
/**
* Time Complexity: O(n)
* Space Complexity: O(1)
*
* The above function is an implementation of the iterator protocol in TypeScript, allowing the
* object to be iterated over using a for...of loop.
*/
protected *_getIterator(): IterableIterator<E> {
for (let i = 0; i < this._length; ++i) {
yield this.at(i);
}
}
/**
* Time Complexity: O(n)
* Space Complexity: O(n)
*
* The `_reallocate` function reallocates the buckets in an array, adding new buckets if needed.
* @param {number} [needBucketNum] - The `needBucketNum` parameter is an optional number that
* specifies the number of new buckets needed. If not provided, it will default to half of the
* current bucket count (`this._bucketCount >> 1`) or 1 if the current bucket count is less than 2.
*/
protected _reallocate(needBucketNum?: number) {
const newBuckets = [];
const addBucketNum = needBucketNum || this._bucketCount >> 1 || 1;
for (let i = 0; i < addBucketNum; ++i) {
newBuckets[i] = new Array(this._bucketSize);
}
for (let i = this._bucketFirst; i < this._bucketCount; ++i) {
newBuckets[newBuckets.length] = this._buckets[i];
}
for (let i = 0; i < this._bucketLast; ++i) {
newBuckets[newBuckets.length] = this._buckets[i];
}
newBuckets[newBuckets.length] = [...this._buckets[this._bucketLast]];
this._bucketFirst = addBucketNum;
this._bucketLast = newBuckets.length - 1;
for (let i = 0; i < addBucketNum; ++i) {
newBuckets[newBuckets.length] = new Array(this._bucketSize);
}
this._buckets = newBuckets;
this._bucketCount = newBuckets.length;
}
/**
* Time Complexity: O(1)
* Space Complexity: O(1)
*
* The function calculates the bucket index and index within the bucket based on the given position.
* @param {number} pos - The `pos` parameter represents the position within the data structure. It is
* a number that indicates the index or position of an element within the structure.
* @returns an object with two properties: "bucketIndex" and "indexInBucket".
*/
protected _getBucketAndPosition(pos: number) {
let bucketIndex: number;
let indexInBucket: number;
const overallIndex = this._firstInBucket + pos;
bucketIndex = this._bucketFirst + Math.floor(overallIndex / this._bucketSize);
if (bucketIndex >= this._bucketCount) {
bucketIndex -= this._bucketCount;
}
indexInBucket = ((overallIndex + 1) % this._bucketSize) - 1;
if (indexInBucket < 0) {
indexInBucket = this._bucketSize - 1;
}
return { bucketIndex, indexInBucket };
}
/**
* The function `_createInstance` returns a new instance of the `Deque` class with the specified
* options.
* @param [options] - The `options` parameter in the `_createInstance` method is of type
* `DequeOptions<E, R>`, which is an optional parameter that allows you to pass additional
* configuration options when creating a new instance of the `Deque` class.
* @returns An instance of the `Deque` class with an empty array and the provided options, casted as
* `this`.
*/
protected override _createInstance(options?: DequeOptions<E, R>): this {
return new Deque<E, R>([], options) as this;
}
/**
* This function returns an iterator that iterates over elements in reverse order.
*/
protected *_getReverseIterator(): IterableIterator<E> {
for (let i = this._length - 1; i > -1; i--) {
yield this.at(i);
}
}
}