UNPKG

doubly-linked-list-typed

Version:
511 lines (467 loc) 21.4 kB
/** * data-structure-typed * * @author Pablo Zeng * @copyright Copyright (c) 2022 Pablo Zeng <zrwusa@gmail.com> * @license MIT License */ import type { BinaryTreeDeleteResult, BSTNOptKeyOrNode, EntryCallback, IterationType, OptNode, RBTNColor, TreeCounterOptions } from '../../types'; import { IBinaryTree } from '../../interfaces'; import { RedBlackTree, RedBlackTreeNode } from './red-black-tree'; export class TreeCounterNode<K = any, V = any> extends RedBlackTreeNode<K, V> { override parent?: TreeCounterNode<K, V> = undefined; /** * The constructor function initializes a Red-Black Tree node with a key, value, count, and color. * @param {K} key - The key parameter represents the key of the node in the Red-Black Tree. It is * used to identify and locate the node within the tree. * @param {V} [value] - The `value` parameter is an optional parameter that represents the value * associated with the key in the Red-Black Tree node. It is not required and can be omitted when * creating a new node. * @param [count=1] - The `count` parameter represents the number of occurrences of a particular key * in the Red-Black Tree. It is an optional parameter with a default value of 1. * @param {RBTNColor} [color=BLACK] - The `color` parameter is used to specify the color of the node * in a Red-Black Tree. It is optional and has a default value of `'BLACK'`. */ constructor(key: K, value?: V, count = 1, color: RBTNColor = 'BLACK') { super(key, value, color); this.count = count; } override _left?: TreeCounterNode<K, V> | null | undefined = undefined; override get left(): TreeCounterNode<K, V> | null | undefined { return this._left; } override set left(v: TreeCounterNode<K, V> | null | undefined) { if (v) { v.parent = this; } this._left = v; } override _right?: TreeCounterNode<K, V> | null | undefined = undefined; override get right(): TreeCounterNode<K, V> | null | undefined { return this._right; } override set right(v: TreeCounterNode<K, V> | null | undefined) { if (v) { v.parent = this; } this._right = v; } } /** * */ export class TreeCounter<K = any, V = any, R = object, MK = any, MV = any, MR = object> extends RedBlackTree<K, V, R, MK, MV, MR> implements IBinaryTree<K, V, R, MK, MV, MR> { /** * The constructor function initializes a TreeCounter object with optional initial data. * @param keysNodesEntriesOrRaws - The parameter `keysNodesEntriesOrRaws` is an * iterable that can contain keys, nodes, entries, or raw elements. It is used to initialize the * TreeCounter with initial data. * @param [options] - The `options` parameter is an optional object that can be used to customize the * behavior of the `TreeCounter` constructor. It can include properties such as `compareKeys` and * `compareValues`, which are functions used to compare keys and values respectively. */ constructor( keysNodesEntriesOrRaws: Iterable< K | TreeCounterNode<K, V> | [K | null | undefined, V | undefined] | null | undefined | R > = [], options?: TreeCounterOptions<K, V, R> ) { super([], options); if (keysNodesEntriesOrRaws) this.addMany(keysNodesEntriesOrRaws); } protected _count = 0; // TODO the _count is not accurate after nodes count modified /** * The function calculates the sum of the count property of all nodes in a tree structure. * @returns the sum of the count property of all nodes in the tree. */ get count(): number { return this._count; } /** * Time Complexity: O(n) * Space Complexity: O(1) * * The function calculates the sum of the count property of all nodes in a tree using depth-first * search. * @returns the sum of the count property of all nodes in the tree. */ getComputedCount(): number { let sum = 0; this.dfs(node => (sum += node ? node.count : 0)); return sum; } /** * The function creates a new TreeCounterNode with the specified key, value, color, and count. * @param {K} key - The key parameter represents the key of the node being created. It is of type K, * which is a generic type representing the type of keys in the tree. * @param {V} [value] - The `value` parameter is an optional parameter that represents the value * associated with the key in the node. It is of type `V`, which can be any data type. * @param {RBTNColor} [color=BLACK] - The color parameter is used to specify the color of the node in * a Red-Black Tree. It can have two possible values: 'RED' or 'BLACK'. The default value is 'BLACK'. * @param {number} [count] - The `count` parameter represents the number of occurrences of a key in * the tree. It is an optional parameter and is used to keep track of the number of values associated * with a key in the tree. * @returns A new instance of the TreeCounterNode class, casted as TreeCounterNode<K, V>. */ override createNode(key: K, value?: V, color: RBTNColor = 'BLACK', count?: number): TreeCounterNode<K, V> { return new TreeCounterNode(key, this._isMapMode ? undefined : value, count, color) as TreeCounterNode<K, V>; } /** * The function creates a new instance of a TreeCounter with the specified options and returns it. * @param [options] - The `options` parameter is an optional object that contains additional * configuration options for creating the `TreeCounter`. It is of type `TreeCounterOptions<K, V, * R>`. * @returns a new instance of the `TreeCounter` class, with the provided options merged with the * existing `iterationType` property. The returned value is casted as `TREE`. */ override createTree(options?: TreeCounterOptions<K, V, R>) { return new TreeCounter<K, V, R, MK, MV, MR>([], { iterationType: this.iterationType, specifyComparable: this._specifyComparable, isMapMode: this._isMapMode, toEntryFn: this._toEntryFn, ...options }); } /** * The function checks if the input is an instance of the TreeCounterNode class. * @param {K | TreeCounterNode<K, V> | [K | null | undefined, V | undefined] | null | undefined} keyNodeOrEntry - The parameter * `keyNodeOrEntry` can be of type `R` or `K | TreeCounterNode<K, V> | [K | null | undefined, V | undefined] | null | undefined`. * @returns a boolean value indicating whether the input parameter `keyNodeOrEntry` is * an instance of the `TreeCounterNode` class. */ override isNode( keyNodeOrEntry: K | TreeCounterNode<K, V> | [K | null | undefined, V | undefined] | null | undefined ): keyNodeOrEntry is TreeCounterNode<K, V> { return keyNodeOrEntry instanceof TreeCounterNode; } /** * Time Complexity: O(log n) * Space Complexity: O(1) * * The function overrides the add method of a class and adds a new node to a data structure, updating * the count and returning a boolean indicating success. * @param {K | TreeCounterNode<K, V> | [K | null | undefined, V | undefined] | null | undefined} keyNodeOrEntry - The * `keyNodeOrEntry` parameter can accept one of the following types: * @param {V} [value] - The `value` parameter represents the value associated with the key in the * data structure. It is an optional parameter, so it can be omitted if not needed. * @param [count=1] - The `count` parameter represents the number of times the key-value pair should * be added to the data structure. By default, it is set to 1, meaning that if no value is provided * for `count`, the key-value pair will be added once. * @returns The method is returning a boolean value. It returns true if the addition of the new node * was successful, and false otherwise. */ override add( keyNodeOrEntry: K | TreeCounterNode<K, V> | [K | null | undefined, V | undefined] | null | undefined, value?: V, count = 1 ): boolean { const [newNode, newValue] = this._keyValueNodeOrEntryToNodeAndValue(keyNodeOrEntry, value, count); const orgCount = newNode?.count || 0; const isSuccessAdded = super.add(newNode, newValue); if (isSuccessAdded) { this._count += orgCount; return true; } else { return false; } } /** * Time Complexity: O(log n) * Space Complexity: O(1) * * The function `delete` in TypeScript overrides the deletion operation in a binary tree data * structure, handling cases where nodes have children and maintaining balance in the tree. * @param {K | TreeCounterNode<K, V> | [K | null | undefined, V | undefined] | null | undefined} keyNodeOrEntry - The `predicate` * parameter in the `delete` method is used to specify the condition or key based on which a node * should be deleted from the binary tree. It can be a key, a node, or an entry. * @param [ignoreCount=false] - The `ignoreCount` parameter in the `override delete` method is a * boolean flag that determines whether to ignore the count of nodes when performing deletion. If * `ignoreCount` is set to `true`, the method will delete the node regardless of its count. If * `ignoreCount` is `false * @returns The `override delete` method returns an array of `BinaryTreeDeleteResult<TreeCounterNode<K, V>>` objects. */ override delete( keyNodeOrEntry: K | TreeCounterNode<K, V> | [K | null | undefined, V | undefined] | null | undefined, ignoreCount = false ): BinaryTreeDeleteResult<TreeCounterNode<K, V>>[] { if (keyNodeOrEntry === null) return []; const results: BinaryTreeDeleteResult<TreeCounterNode<K, V>>[] = []; let nodeToDelete: OptNode<TreeCounterNode<K, V>>; if (this._isPredicate(keyNodeOrEntry)) nodeToDelete = this.getNode(keyNodeOrEntry); else nodeToDelete = this.isRealNode(keyNodeOrEntry) ? keyNodeOrEntry : this.getNode(keyNodeOrEntry); if (!nodeToDelete) { return results; } let originalColor = nodeToDelete.color; let replacementNode: TreeCounterNode<K, V> | undefined; if (!this.isRealNode(nodeToDelete.left)) { if (nodeToDelete.right !== null) replacementNode = nodeToDelete.right; if (ignoreCount || nodeToDelete.count <= 1) { if (nodeToDelete.right !== null) { this._transplant(nodeToDelete, nodeToDelete.right); this._count -= nodeToDelete.count; } } else { nodeToDelete.count--; this._count--; results.push({ deleted: nodeToDelete, needBalanced: undefined }); return results; } } else if (!this.isRealNode(nodeToDelete.right)) { replacementNode = nodeToDelete.left; if (ignoreCount || nodeToDelete.count <= 1) { this._transplant(nodeToDelete, nodeToDelete.left); this._count -= nodeToDelete.count; } else { nodeToDelete.count--; this._count--; results.push({ deleted: nodeToDelete, needBalanced: undefined }); return results; } } else { const successor = this.getLeftMost(node => node, nodeToDelete.right); if (successor) { originalColor = successor.color; if (successor.right !== null) replacementNode = successor.right; if (successor.parent === nodeToDelete) { if (this.isRealNode(replacementNode)) { replacementNode.parent = successor; } } else { if (ignoreCount || nodeToDelete.count <= 1) { if (successor.right !== null) { this._transplant(successor, successor.right); this._count -= nodeToDelete.count; } } else { nodeToDelete.count--; this._count--; results.push({ deleted: nodeToDelete, needBalanced: undefined }); return results; } successor.right = nodeToDelete.right; if (this.isRealNode(successor.right)) { successor.right.parent = successor; } } if (ignoreCount || nodeToDelete.count <= 1) { this._transplant(nodeToDelete, successor); this._count -= nodeToDelete.count; } else { nodeToDelete.count--; this._count--; results.push({ deleted: nodeToDelete, needBalanced: undefined }); return results; } successor.left = nodeToDelete.left; if (this.isRealNode(successor.left)) { successor.left.parent = successor; } successor.color = nodeToDelete.color; } } this._size--; // If the original color was black, fix the tree if (originalColor === 'BLACK') { this._deleteFixup(replacementNode); } results.push({ deleted: nodeToDelete, needBalanced: undefined }); return results; } /** * Time Complexity: O(1) * Space Complexity: O(1) * * The "clear" function overrides the parent class's "clear" function and also resets the count to * zero. */ override clear() { super.clear(); this._count = 0; } /** * Time Complexity: O(n log n) * Space Complexity: O(log n) * * The `perfectlyBalance` function takes a sorted array of nodes and builds a balanced binary search * tree using either a recursive or iterative approach. * @param {IterationType} iterationType - The `iterationType` parameter is an optional parameter that * specifies the type of iteration to use when building the balanced binary search tree. It has a * default value of `this.iterationType`, which means it will use the iteration type specified by the * `iterationType` property of the current object. * @returns The function `perfectlyBalance` returns a boolean value. It returns `true` if the * balancing operation is successful, and `false` if there are no nodes to balance. */ override perfectlyBalance(iterationType: IterationType = this.iterationType): boolean { const sorted = this.dfs(node => node, 'IN'), n = sorted.length; if (sorted.length < 1) return false; this.clear(); if (iterationType === 'RECURSIVE') { const buildBalanceBST = (l: number, r: number) => { if (l > r) return; const m = l + Math.floor((r - l) / 2); const midNode = sorted[m]; if (this._isMapMode && midNode !== null) this.add(midNode.key, undefined, midNode.count); else if (midNode !== null) this.add(midNode.key, midNode.value, midNode.count); buildBalanceBST(l, m - 1); buildBalanceBST(m + 1, r); }; buildBalanceBST(0, n - 1); return true; } else { const stack: [[number, number]] = [[0, n - 1]]; while (stack.length > 0) { const popped = stack.pop(); if (popped) { const [l, r] = popped; if (l <= r) { const m = l + Math.floor((r - l) / 2); const midNode = sorted[m]; if (this._isMapMode && midNode !== null) this.add(midNode.key, undefined, midNode.count); else if (midNode !== null) this.add(midNode.key, midNode.value, midNode.count); stack.push([m + 1, r]); stack.push([l, m - 1]); } } } return true; } } /** * Time complexity: O(n) * Space complexity: O(n) * * The function overrides the clone method to create a deep copy of a tree object. * @returns The `clone()` method is returning a cloned instance of the `TREE` object. */ override clone() { const cloned = this.createTree(); this.bfs(node => cloned.add(node === null ? null : node.key, undefined, node === null ? 0 : node.count)); if (this._isMapMode) cloned._store = this._store; return cloned; } /** * The `map` function in TypeScript overrides the default behavior to create a new TreeCounter with * modified entries based on a provided callback. * @param callback - The `callback` parameter is a function that will be called for each entry in the * map. It takes four arguments: * @param [options] - The `options` parameter in the `override map` function is of type * `TreeCounterOptions<MK, MV, MR>`. This parameter allows you to provide additional configuration * options when creating a new `TreeCounter` instance within the `map` function. These options could * include things like * @param {any} [thisArg] - The `thisArg` parameter in the `override map` function is used to specify * the value of `this` when executing the `callback` function. It allows you to set the context * (value of `this`) for the callback function when it is called within the `map` function. This * @returns A new TreeCounter instance is being returned, which is populated with entries generated * by the provided callback function. */ override map( callback: EntryCallback<K, V | undefined, [MK, MV]>, options?: TreeCounterOptions<MK, MV, MR>, thisArg?: any ): TreeCounter<MK, MV, MR> { const newTree = new TreeCounter<MK, MV, MR>([], options); let index = 0; for (const [key, value] of this) { newTree.add(callback.call(thisArg, key, value, index++, this)); } return newTree; } /** * The function `keyValueNodeEntryRawToNodeAndValue` takes in a key, value, and count and returns a * node based on the input. * @param {K | TreeCounterNode<K, V> | [K | null | undefined, V | undefined] | null | undefined} keyNodeOrEntry - The parameter * `keyNodeOrEntry` can be of type `R` or `K | TreeCounterNode<K, V> | [K | null | undefined, V | undefined] | null | undefined`. * @param {V} [value] - The `value` parameter is an optional value that represents the value * associated with the key in the node. It is used when creating a new node or updating the value of * an existing node. * @param [count=1] - The `count` parameter is an optional parameter that specifies the number of * times the key-value pair should be added to the data structure. If not provided, it defaults to 1. * @returns either a TreeCounterNode<K, V> object or undefined. */ protected override _keyValueNodeOrEntryToNodeAndValue( keyNodeOrEntry: K | TreeCounterNode<K, V> | [K | null | undefined, V | undefined] | null | undefined, value?: V, count = 1 ): [TreeCounterNode<K, V> | undefined, V | undefined] { if (keyNodeOrEntry === undefined || keyNodeOrEntry === null) return [undefined, undefined]; if (this.isNode(keyNodeOrEntry)) return [keyNodeOrEntry, value]; if (this.isEntry(keyNodeOrEntry)) { const [key, entryValue] = keyNodeOrEntry; if (key === undefined || key === null) return [undefined, undefined]; const finalValue = value ?? entryValue; return [this.createNode(key, finalValue, 'BLACK', count), finalValue]; } return [this.createNode(keyNodeOrEntry, value, 'BLACK', count), value]; } /** * Time Complexity: O(1) * Space Complexity: O(1) * * The `_swapProperties` function swaps the properties (key, value, count, color) between two nodes * in a binary search tree. * @param {R | BSTNOptKeyOrNode<K, TreeCounterNode<K, V>>} srcNode - The `srcNode` parameter represents the source node * that will be swapped with the `destNode`. It can be either an instance of the `R` class or an * instance of the `BSTNOptKeyOrNode<K, TreeCounterNode<K, V>>` class. * @param {R | BSTNOptKeyOrNode<K, TreeCounterNode<K, V>>} destNode - The `destNode` parameter represents the destination * node where the properties will be swapped with the source node. * @returns The method is returning the `destNode` after swapping its properties with the `srcNode`. * If either `srcNode` or `destNode` is undefined, it returns undefined. */ protected override _swapProperties( srcNode: BSTNOptKeyOrNode<K, TreeCounterNode<K, V>>, destNode: BSTNOptKeyOrNode<K, TreeCounterNode<K, V>> ): TreeCounterNode<K, V> | undefined { srcNode = this.ensureNode(srcNode); destNode = this.ensureNode(destNode); if (srcNode && destNode) { const { key, value, count, color } = destNode; const tempNode = this.createNode(key, value, color, count); if (tempNode) { tempNode.color = color; destNode.key = srcNode.key; if (!this._isMapMode) destNode.value = srcNode.value; destNode.count = srcNode.count; destNode.color = srcNode.color; srcNode.key = tempNode.key; if (!this._isMapMode) srcNode.value = tempNode.value; srcNode.count = tempNode.count; srcNode.color = tempNode.color; } return destNode; } return undefined; } /** * Time Complexity: O(1) * Space Complexity: O(1) * * The function replaces an old node with a new node and updates the count property of the new node. * @param {TreeCounterNode<K, V>} oldNode - The `oldNode` parameter is the node that you want to replace in the data * structure. * @param {TreeCounterNode<K, V>} newNode - The `newNode` parameter is an instance of the `TreeCounterNode<K, V>` class. * @returns The method is returning the result of calling the `_replaceNode` method from the * superclass, which is of type `TreeCounterNode<K, V>`. */ protected override _replaceNode( oldNode: TreeCounterNode<K, V>, newNode: TreeCounterNode<K, V> ): TreeCounterNode<K, V> { newNode.count = oldNode.count + newNode.count; return super._replaceNode(oldNode, newNode); } }