UNPKG

doubly-linked-list-typed

Version:
1,128 lines (1,033 loc) 114 kB
/** * data-structure-typed * * @author Pablo Zeng * @copyright Copyright (c) 2022 Pablo Zeng <zrwusa@gmail.com> * @license MIT License */ import type { BinaryTreeDeleteResult, BinaryTreeOptions, BinaryTreePrintOptions, BTNEntry, DFSOrderPattern, DFSStackItem, EntryCallback, FamilyPosition, IterationType, NodeCallback, NodeDisplayLayout, NodePredicate, OptNodeOrNull, RBTNColor, ToEntryFn } from '../../types'; import { IBinaryTree } from '../../interfaces'; import { isComparable, trampoline } from '../../utils'; import { Queue } from '../queue'; import { IterableEntryBase } from '../base'; import { DFSOperation, Range } from '../../common'; /** * Represents a node in a binary tree. * @template V - The type of data stored in the node. * @template BinaryTreeNode<K, V> - The type of the family relationship in the binary tree. */ export class BinaryTreeNode<K = any, V = any> { key: K; value?: V; parent?: BinaryTreeNode<K, V> = undefined; /** * The constructor function initializes an object with a key and an optional value in TypeScript. * @param {K} key - The `key` parameter in the constructor function is used to store the key value * for the key-value pair. * @param {V} [value] - The `value` parameter in the constructor is optional, meaning it does not * have to be provided when creating an instance of the class. If a `value` is not provided, it will * default to `undefined`. */ constructor(key: K, value?: V) { this.key = key; this.value = value; } _left?: BinaryTreeNode<K, V> | null | undefined = undefined; get left(): BinaryTreeNode<K, V> | null | undefined { return this._left; } set left(v: BinaryTreeNode<K, V> | null | undefined) { if (v) { v.parent = this as unknown as BinaryTreeNode<K, V>; } this._left = v; } _right?: BinaryTreeNode<K, V> | null | undefined = undefined; get right(): BinaryTreeNode<K, V> | null | undefined { return this._right; } set right(v: BinaryTreeNode<K, V> | null | undefined) { if (v) { v.parent = this; } this._right = v; } _height: number = 0; get height(): number { return this._height; } set height(value: number) { this._height = value; } _color: RBTNColor = 'BLACK'; get color(): RBTNColor { return this._color; } set color(value: RBTNColor) { this._color = value; } _count: number = 1; get count(): number { return this._count; } set count(value: number) { this._count = value; } get familyPosition(): FamilyPosition { if (!this.parent) { return this.left || this.right ? 'ROOT' : 'ISOLATED'; } if (this.parent.left === this) { return this.left || this.right ? 'ROOT_LEFT' : 'LEFT'; } else if (this.parent.right === this) { return this.left || this.right ? 'ROOT_RIGHT' : 'RIGHT'; } return 'MAL_NODE'; } } /** * 1. Two Children Maximum: Each node has at most two children. * 2. Left and Right Children: Nodes have distinct left and right children. * 3. Depth and Height: Depth is the number of edges from the root to a node; height is the maximum depth in the tree. * 4. Subtrees: Each child of a node forms the root of a subtree. * 5. Leaf Nodes: Nodes without children are leaves. * @example * // determine loan approval using a decision tree * // Decision tree structure * const loanDecisionTree = new BinaryTree<string>( * ['stableIncome', 'goodCredit', 'Rejected', 'Approved', 'Rejected'], * { isDuplicate: true } * ); * * function determineLoanApproval( * node?: BinaryTreeNode<string> | null, * conditions?: { [key: string]: boolean } * ): string { * if (!node) throw new Error('Invalid node'); * * // If it's a leaf node, return the decision result * if (!node.left && !node.right) return node.key; * * // Check if a valid condition exists for the current node's key * return conditions?.[node.key] * ? determineLoanApproval(node.left, conditions) * : determineLoanApproval(node.right, conditions); * } * * // Test case 1: Stable income and good credit score * console.log(determineLoanApproval(loanDecisionTree.root, { stableIncome: true, goodCredit: true })); // 'Approved' * * // Test case 2: Stable income but poor credit score * console.log(determineLoanApproval(loanDecisionTree.root, { stableIncome: true, goodCredit: false })); // 'Rejected' * * // Test case 3: No stable income * console.log(determineLoanApproval(loanDecisionTree.root, { stableIncome: false, goodCredit: true })); // 'Rejected' * * // Test case 4: No stable income and poor credit score * console.log(determineLoanApproval(loanDecisionTree.root, { stableIncome: false, goodCredit: false })); // 'Rejected' * @example * // evaluate the arithmetic expression represented by the binary tree * const expressionTree = new BinaryTree<number | string>(['+', 3, '*', null, null, 5, '-', null, null, 2, 8]); * * function evaluate(node?: BinaryTreeNode<number | string> | null): number { * if (!node) return 0; * * if (typeof node.key === 'number') return node.key; * * const leftValue = evaluate(node.left); // Evaluate the left subtree * const rightValue = evaluate(node.right); // Evaluate the right subtree * * // Perform the operation based on the current node's operator * switch (node.key) { * case '+': * return leftValue + rightValue; * case '-': * return leftValue - rightValue; * case '*': * return leftValue * rightValue; * case '/': * return rightValue !== 0 ? leftValue / rightValue : 0; // Handle division by zero * default: * throw new Error(`Unsupported operator: ${node.key}`); * } * } * * console.log(evaluate(expressionTree.root)); // -27 */ export class BinaryTree<K = any, V = any, R = object, MK = any, MV = any, MR = object> extends IterableEntryBase<K, V | undefined> implements IBinaryTree<K, V, R, MK, MV, MR> { iterationType: IterationType = 'ITERATIVE'; /** * This TypeScript constructor function initializes a binary tree with optional options and adds * elements based on the provided input. * @param keysNodesEntriesOrRaws - The `keysNodesEntriesOrRaws` parameter in the constructor is an * iterable that can contain either objects of type `K | BinaryTreeNode<K, V> | [K | null | undefined, V | undefined] | null | undefined ` or `R`. It * is used to initialize the binary tree with keys, nodes, entries, or raw data. * @param [options] - The `options` parameter in the constructor is an optional object that can * contain the following properties: */ constructor( keysNodesEntriesOrRaws: Iterable< K | BinaryTreeNode<K, V> | [K | null | undefined, V | undefined] | null | undefined | R > = [], options?: BinaryTreeOptions<K, V, R> ) { super(); if (options) { const { iterationType, toEntryFn, isMapMode, isDuplicate } = options; if (iterationType) this.iterationType = iterationType; if (isMapMode !== undefined) this._isMapMode = isMapMode; if (isDuplicate !== undefined) this._isDuplicate = isDuplicate; if (typeof toEntryFn === 'function') this._toEntryFn = toEntryFn; else if (toEntryFn) throw TypeError('toEntryFn must be a function type'); } if (keysNodesEntriesOrRaws) this.addMany(keysNodesEntriesOrRaws); } protected _isMapMode = true; get isMapMode() { return this._isMapMode; } protected _isDuplicate = false; get isDuplicate() { return this._isDuplicate; } protected _store = new Map<K, V | undefined>(); get store() { return this._store; } protected _root?: BinaryTreeNode<K, V> | null | undefined; get root(): BinaryTreeNode<K, V> | null | undefined { return this._root; } protected _size: number = 0; get size(): number { return this._size; } protected _NIL: BinaryTreeNode<K, V> = new BinaryTreeNode<K, V>(NaN as K) as unknown as BinaryTreeNode<K, V>; get NIL(): BinaryTreeNode<K, V> { return this._NIL; } protected _toEntryFn?: ToEntryFn<K, V, R>; get toEntryFn() { return this._toEntryFn; } /** * Time Complexity: O(1) * Space Complexity: O(1) * * The function creates a new binary tree node with a specified key and optional value. * @param {K} key - The `key` parameter is the key of the node being created in the binary tree. * @param {V} [value] - The `value` parameter in the `createNode` function is optional, meaning it is * not required to be provided when calling the function. If a `value` is provided, it should be of * type `V`, which is the type of the value associated with the node. * @returns A new BinaryTreeNode instance with the provided key and value is being returned, casted * as BinaryTreeNode<K, V>. */ createNode(key: K, value?: V): BinaryTreeNode<K, V> { return new BinaryTreeNode<K, V>(key, this._isMapMode ? undefined : value); } /** * Time Complexity: O(1) * Space Complexity: O(1) * * The function creates a binary tree with the specified options. * @param [options] - The `options` parameter in the `createTree` function is an optional parameter * that allows you to provide partial configuration options for creating a binary tree. It is of type * `Partial<BinaryTreeOptions<K, V, R>>`, which means you can pass in an object containing a subset * of properties * @returns A new instance of a binary tree with the specified options is being returned. */ createTree(options?: BinaryTreeOptions<K, V, R>) { return new BinaryTree<K, V, R, MK, MV, MR>([], { iterationType: this.iterationType, isMapMode: this._isMapMode, toEntryFn: this._toEntryFn, ...options }); } /** * Time Complexity: O(n) * Space Complexity: O(log n) * * The function `ensureNode` in TypeScript checks if a given input is a node, entry, key, or raw * value and returns the corresponding node or null. * @param {K | BinaryTreeNode<K, V> | [K | null | undefined, V | undefined] | null | undefined } keyNodeOrEntry - The `keyNodeOrEntry` * parameter in the `ensureNode` function can be of type `K | BinaryTreeNode<K, V> | [K | null | undefined, V | undefined] | null | undefined ` or `R`. It * is used to determine whether the input is a key, node, entry, or raw data. The * @param {IterationType} iterationType - The `iterationType` parameter in the `ensureNode` function * is used to specify the type of iteration to be performed. It has a default value of * `this.iterationType` if not explicitly provided. * @returns The `ensureNode` function returns either a node, `null`, or `undefined` based on the * conditions specified in the code snippet. */ ensureNode( keyNodeOrEntry: K | BinaryTreeNode<K, V> | [K | null | undefined, V | undefined] | null | undefined, iterationType: IterationType = this.iterationType ): BinaryTreeNode<K, V> | null | undefined { if (keyNodeOrEntry === null) return null; if (keyNodeOrEntry === undefined) return; if (keyNodeOrEntry === this._NIL) return; if (this.isNode(keyNodeOrEntry)) return keyNodeOrEntry; if (this.isEntry(keyNodeOrEntry)) { const key = keyNodeOrEntry[0]; if (key === null) return null; if (key === undefined) return; return this.getNode(key, this._root, iterationType); } return this.getNode(keyNodeOrEntry, this._root, iterationType); } /** * Time Complexity: O(1) * Space Complexity: O(1) * * The function isNode checks if the input is an instance of BinaryTreeNode. * @param {K | BinaryTreeNode<K, V> | [K | null | undefined, V | undefined] | null | undefined } keyNodeOrEntry - The parameter * `keyNodeOrEntry` can be either a key, a node, an entry, or raw data. The function is * checking if the input is an instance of a `BinaryTreeNode` and returning a boolean value * accordingly. * @returns The function `isNode` is checking if the input `keyNodeOrEntry` is an instance of * `BinaryTreeNode`. If it is, the function returns `true`, indicating that the input is a node. If * it is not an instance of `BinaryTreeNode`, the function returns `false`, indicating that the input * is not a node. */ isNode( keyNodeOrEntry: K | BinaryTreeNode<K, V> | [K | null | undefined, V | undefined] | null | undefined ): keyNodeOrEntry is BinaryTreeNode<K, V> { return keyNodeOrEntry instanceof BinaryTreeNode; } /** * Time Complexity: O(1) * Space Complexity: O(1) * * The function `isRaw` checks if the input parameter is of type `R` by verifying if it is an object. * @param {K | BinaryTreeNode<K, V> | [K | null | undefined, V | undefined] | null | undefined | R} keyNodeEntryOrRaw - K | BinaryTreeNode<K, V> | [K | null | undefined, V | undefined] | null | undefined * @returns The function `isRaw` is checking if the `keyNodeEntryOrRaw` parameter is of type `R` by * checking if it is an object. If the parameter is an object, the function will return `true`, * indicating that it is of type `R`. */ isRaw( keyNodeEntryOrRaw: K | BinaryTreeNode<K, V> | [K | null | undefined, V | undefined] | null | undefined | R ): keyNodeEntryOrRaw is R { return this._toEntryFn !== undefined && typeof keyNodeEntryOrRaw === 'object'; } /** * Time Complexity: O(1) * Space Complexity: O(1) * * The function `isRealNode` checks if a given input is a valid node in a binary tree. * @param {K | BinaryTreeNode<K, V> | [K | null | undefined, V | undefined] | null | undefined } keyNodeOrEntry - The `keyNodeOrEntry` * parameter in the `isRealNode` function can be of type `K | BinaryTreeNode<K, V> | [K | null | undefined, V | undefined] | null | undefined ` or `R`. * The function checks if the input parameter is a `BinaryTreeNode<K, V>` type by verifying if it is not equal * @returns The function `isRealNode` is checking if the input `keyNodeOrEntry` is a valid * node by comparing it to `this._NIL`, `null`, and `undefined`. If the input is not one of these * values, it then calls the `isNode` method to further determine if the input is a node. The * function will return a boolean value indicating whether the */ isRealNode( keyNodeOrEntry: K | BinaryTreeNode<K, V> | [K | null | undefined, V | undefined] | null | undefined ): keyNodeOrEntry is BinaryTreeNode<K, V> { if (keyNodeOrEntry === this._NIL || keyNodeOrEntry === null || keyNodeOrEntry === undefined) return false; return this.isNode(keyNodeOrEntry); } /** * Time Complexity: O(1) * Space Complexity: O(1) * * The function checks if a given input is a valid node or null. * @param {K | BinaryTreeNode<K, V> | [K | null | undefined, V | undefined] | null | undefined } keyNodeOrEntry - The parameter * `keyNodeOrEntry` in the `isRealNodeOrNull` function can be of type `BTNRep<K, * V, BinaryTreeNode<K, V>>` or `R`. It is a union type that can either be a key, a node, an entry, or * @returns The function `isRealNodeOrNull` is returning a boolean value. It checks if the input * `keyNodeOrEntry` is either `null` or a real node, and returns `true` if it is a node or * `null`, and `false` otherwise. */ isRealNodeOrNull( keyNodeOrEntry: K | BinaryTreeNode<K, V> | [K | null | undefined, V | undefined] | null | undefined ): keyNodeOrEntry is BinaryTreeNode<K, V> | null { return keyNodeOrEntry === null || this.isRealNode(keyNodeOrEntry); } /** * Time Complexity: O(1) * Space Complexity: O(1) * * The function isNIL checks if a given key, node, entry, or raw value is equal to the _NIL value. * @param {K | BinaryTreeNode<K, V> | [K | null | undefined, V | undefined] | null | undefined } keyNodeOrEntry - BTNRep<K, V, * BinaryTreeNode<K, V>> * @returns The function is checking if the `keyNodeOrEntry` parameter is equal to the `_NIL` * property of the current object and returning a boolean value based on that comparison. */ isNIL(keyNodeOrEntry: K | BinaryTreeNode<K, V> | [K | null | undefined, V | undefined] | null | undefined): boolean { return keyNodeOrEntry === this._NIL; } /** * Time Complexity: O(1) * Space Complexity: O(1) * * The function `isRange` checks if the input parameter is an instance of the `Range` class. * @param {K | BinaryTreeNode<K, V> | [K | null | undefined, V | undefined] | null | undefined | NodePredicate<BinaryTreeNode<K, V>> | Range<K>} keyNodeEntryOrPredicate * - The `keyNodeEntryOrPredicate` parameter in the `isRange` function can be * of type `K | BinaryTreeNode<K, V> | [K | null | undefined, V | undefined] | null | undefined `, `NodePredicate<BinaryTreeNode<K, V>>`, or * `Range<K>`. The function checks if the `keyNodeEntry * @returns The `isRange` function is checking if the `keyNodeEntryOrPredicate` parameter is an * instance of the `Range` class. If it is an instance of `Range`, the function will return `true`, * indicating that the parameter is a `Range<K>`. If it is not an instance of `Range`, the function * will return `false`. */ isRange( keyNodeEntryOrPredicate: | K | BinaryTreeNode<K, V> | [K | null | undefined, V | undefined] | null | undefined | NodePredicate<BinaryTreeNode<K, V>> | Range<K> ): keyNodeEntryOrPredicate is Range<K> { return keyNodeEntryOrPredicate instanceof Range; } /** * Time Complexity: O(1) * Space Complexity: O(1) * * The function determines whether a given key, node, entry, or raw data is a leaf node in a binary * tree. * @param {K | BinaryTreeNode<K, V> | [K | null | undefined, V | undefined] | null | undefined } keyNodeOrEntry - The parameter * `keyNodeOrEntry` can be of type `K | BinaryTreeNode<K, V> | [K | null | undefined, V | undefined] | null | undefined ` or `R`. It represents a * key, node, entry, or raw data in a binary tree structure. The function `isLeaf` checks whether the * provided * @returns The function `isLeaf` returns a boolean value indicating whether the input * `keyNodeOrEntry` is a leaf node in a binary tree. */ isLeaf(keyNodeOrEntry: K | BinaryTreeNode<K, V> | [K | null | undefined, V | undefined] | null | undefined): boolean { keyNodeOrEntry = this.ensureNode(keyNodeOrEntry); if (keyNodeOrEntry === undefined) return false; if (keyNodeOrEntry === null) return true; return !this.isRealNode(keyNodeOrEntry.left) && !this.isRealNode(keyNodeOrEntry.right); } /** * Time Complexity: O(1) * Space Complexity: O(1) * * The function `isEntry` checks if the input is a BTNEntry object by verifying if it is an array * with a length of 2. * @param {K | BinaryTreeNode<K, V> | [K | null | undefined, V | undefined] | null | undefined } keyNodeOrEntry - The `keyNodeOrEntry` * parameter in the `isEntry` function can be of type `K | BinaryTreeNode<K, V> | [K | null | undefined, V | undefined] | null | undefined ` or type `R`. * The function checks if the provided `keyNodeOrEntry` is of type `BTN * @returns The `isEntry` function is checking if the `keyNodeOrEntry` parameter is an array * with a length of 2. If it is, then it returns `true`, indicating that the parameter is of type * `BTNEntry<K, V>`. If the condition is not met, it returns `false`. */ isEntry( keyNodeOrEntry: K | BinaryTreeNode<K, V> | [K | null | undefined, V | undefined] | null | undefined ): keyNodeOrEntry is BTNEntry<K, V> { return Array.isArray(keyNodeOrEntry) && keyNodeOrEntry.length === 2; } /** * Time Complexity O(1) * Space Complexity O(1) * * The function `isValidKey` checks if a given key is comparable. * @param {any} key - The `key` parameter is of type `any`, which means it can be any data type in * TypeScript. * @returns The function `isValidKey` is checking if the `key` parameter is `null` or if it is comparable. * If the `key` is `null`, the function returns `true`. Otherwise, it returns the result of the * `isComparable` function, which is not provided in the code snippet. */ isValidKey(key: any): key is K { if (key === null) return true; return isComparable(key); } /** * Time Complexity O(n) * Space Complexity O(1) * * The `add` function in TypeScript adds a new node to a binary tree while handling duplicate keys * and finding the correct insertion position. * @param {K | BinaryTreeNode<K, V> | [K | null | undefined, V | undefined] | null | undefined } keyNodeOrEntry - The `add` method you provided * seems to be for adding a new node to a binary tree structure. The `keyNodeOrEntry` * parameter in the method can accept different types of values: * @param {V} [value] - The `value` parameter in the `add` method represents the value associated * with the key that you want to add to the binary tree. When adding a key-value pair to the binary * tree, you provide the key and its corresponding value. The `add` method then creates a new node * with this * @returns The `add` method returns a boolean value. It returns `true` if the insertion of the new * node was successful, and `false` if the insertion position could not be found or if a duplicate * key was found and the node was replaced instead of inserted. */ add( keyNodeOrEntry: K | BinaryTreeNode<K, V> | [K | null | undefined, V | undefined] | null | undefined, value?: V ): boolean { const [newNode, newValue] = this._keyValueNodeOrEntryToNodeAndValue(keyNodeOrEntry, value); if (newNode === undefined) return false; // If the tree is empty, directly set the new node as the root node if (!this._root) { this._setRoot(newNode); if (this._isMapMode) this._setValue(newNode?.key, newValue); this._size = 1; return true; } const queue = new Queue<BinaryTreeNode<K, V>>([this._root]); let potentialParent: BinaryTreeNode<K, V> | undefined; // Record the parent node of the potential insertion location while (queue.length > 0) { const cur = queue.shift(); if (!cur) continue; if (!this._isDuplicate) { // Check for duplicate keys when newNode is not null if (newNode !== null && cur.key === newNode.key) { this._replaceNode(cur, newNode); if (this._isMapMode) this._setValue(cur.key, newValue); return true; // If duplicate keys are found, no insertion is performed } } // Record the first possible insertion location found if (potentialParent === undefined && (cur.left === undefined || cur.right === undefined)) { potentialParent = cur; } // Continue traversing the left and right subtrees if (cur.left !== null) { if (cur.left) queue.push(cur.left); } if (cur.right !== null) { if (cur.right) queue.push(cur.right); } } // At the end of the traversal, if the insertion position is found, insert if (potentialParent) { if (potentialParent.left === undefined) { potentialParent.left = newNode; } else if (potentialParent.right === undefined) { potentialParent.right = newNode; } if (this._isMapMode) this._setValue(newNode?.key, newValue); this._size++; return true; } return false; // If the insertion position cannot be found, return undefined } /** * Time Complexity: O(k * n) * Space Complexity: O(k) * * The `addMany` function takes in multiple keys or nodes or entries or raw values along with * optional values, and adds them to a data structure while returning an array indicating whether * each insertion was successful. * @param keysNodesEntriesOrRaws - `keysNodesEntriesOrRaws` is an iterable that can contain a * mix of keys, nodes, entries, or raw values. Each element in this iterable can be of type * `K | BinaryTreeNode<K, V> | [K | null | undefined, V | undefined] | null | undefined ` or `R`. * @param [values] - The `values` parameter in the `addMany` function is an optional parameter that * accepts an iterable of values. These values correspond to the keys or nodes being added in the * `keysNodesEntriesOrRaws` parameter. If provided, the function will iterate over the values and * assign them * @returns The `addMany` method returns an array of boolean values indicating whether each key, * node, entry, or raw value was successfully added to the data structure. Each boolean value * corresponds to the success of adding the corresponding key or value in the input iterable. */ addMany( keysNodesEntriesOrRaws: Iterable< K | BinaryTreeNode<K, V> | [K | null | undefined, V | undefined] | null | undefined | R >, values?: Iterable<V | undefined> ): boolean[] { // TODO not sure addMany not be run multi times const inserted: boolean[] = []; let valuesIterator: Iterator<V | undefined> | undefined; if (values) { valuesIterator = values[Symbol.iterator](); } for (let keyNodeEntryOrRaw of keysNodesEntriesOrRaws) { let value: V | undefined | null = undefined; if (valuesIterator) { const valueResult = valuesIterator.next(); if (!valueResult.done) { value = valueResult.value; } } if (this.isRaw(keyNodeEntryOrRaw)) keyNodeEntryOrRaw = this._toEntryFn!(keyNodeEntryOrRaw); inserted.push(this.add(keyNodeEntryOrRaw, value)); } return inserted; } /** * Time Complexity: O(k * n) * Space Complexity: O(1) * * The `merge` function in TypeScript merges another binary tree into the current tree by adding all * elements from the other tree. * @param anotherTree - BinaryTree<K, V, R, MK, MV, MR> */ merge(anotherTree: BinaryTree<K, V, R, MK, MV, MR>) { this.addMany(anotherTree, []); } /** * Time Complexity: O(k * n) * Space Complexity: O(1) * * The `refill` function clears the existing data structure and then adds new key-value pairs based * on the provided input. * @param keysNodesEntriesOrRaws - The `keysNodesEntriesOrRaws` parameter in the `refill` * method can accept an iterable containing a mix of `K | BinaryTreeNode<K, V> | [K | null | undefined, V | undefined] | null | undefined ` objects or `R` * objects. * @param [values] - The `values` parameter in the `refill` method is an optional parameter that * accepts an iterable of values of type `V` or `undefined`. */ refill( keysNodesEntriesOrRaws: Iterable< K | BinaryTreeNode<K, V> | [K | null | undefined, V | undefined] | null | undefined | R >, values?: Iterable<V | undefined> ): void { this.clear(); this.addMany(keysNodesEntriesOrRaws, values); } /** * Time Complexity: O(n) * Space Complexity: O(1) * * The function `delete` in TypeScript implements the deletion of a node in a binary tree and returns * the deleted node along with information for tree balancing. * @param {K | BinaryTreeNode<K, V> | [K | null | undefined, V | undefined] | null | undefined } keyNodeOrEntry * - The `delete` method you provided is used to delete a node from a binary tree based on the key, * node, entry or raw data. The method returns an array of * `BinaryTreeDeleteResult` objects containing information about the deleted node and whether * balancing is needed. * @returns The `delete` method returns an array of `BinaryTreeDeleteResult` objects. Each object in * the array contains information about the node that was deleted (`deleted`) and the node that may * need to be balanced (`needBalanced`). */ delete( keyNodeOrEntry: K | BinaryTreeNode<K, V> | [K | null | undefined, V | undefined] | null | undefined ): BinaryTreeDeleteResult<BinaryTreeNode<K, V>>[] { const deletedResult: BinaryTreeDeleteResult<BinaryTreeNode<K, V>>[] = []; if (!this._root) return deletedResult; const curr = this.getNode(keyNodeOrEntry); if (!curr) return deletedResult; const parent: BinaryTreeNode<K, V> | undefined = curr?.parent; let needBalanced: BinaryTreeNode<K, V> | undefined; let orgCurrent: BinaryTreeNode<K, V> | undefined = curr; if (!curr.left && !curr.right && !parent) { this._setRoot(undefined); } else if (curr.left) { const leftSubTreeRightMost = this.getRightMost(node => node, curr.left); if (leftSubTreeRightMost) { const parentOfLeftSubTreeMax = leftSubTreeRightMost.parent; orgCurrent = this._swapProperties(curr, leftSubTreeRightMost); if (parentOfLeftSubTreeMax) { if (parentOfLeftSubTreeMax.right === leftSubTreeRightMost) parentOfLeftSubTreeMax.right = leftSubTreeRightMost.left; else parentOfLeftSubTreeMax.left = leftSubTreeRightMost.left; needBalanced = parentOfLeftSubTreeMax; } } } else if (parent) { const { familyPosition: fp } = curr; if (fp === 'LEFT' || fp === 'ROOT_LEFT') { parent.left = curr.right; } else if (fp === 'RIGHT' || fp === 'ROOT_RIGHT') { parent.right = curr.right; } needBalanced = parent; } else { this._setRoot(curr.right); curr.right = undefined; } this._size = this._size - 1; deletedResult.push({ deleted: orgCurrent, needBalanced }); if (this._isMapMode && orgCurrent) this._store.delete(orgCurrent.key); return deletedResult; } /** * Time Complexity: O(n) * Space Complexity: O(k + log n) * * The `search` function in TypeScript performs a depth-first or breadth-first search on a tree * structure based on a given predicate or key, with options to return multiple results or just one. * @param {K | BinaryTreeNode<K, V> | [K | null | undefined, V | undefined] | null | undefined | NodePredicate<BinaryTreeNode<K, V>>} keyNodeEntryOrPredicate - The * `keyNodeEntryOrPredicate` parameter in the `search` function can accept three types of values: * @param [onlyOne=false] - The `onlyOne` parameter in the `search` function is a boolean flag that * determines whether the search should stop after finding the first matching node. If `onlyOne` is * set to `true`, the search will return as soon as a matching node is found. If `onlyOne` is * @param {C} callback - The `callback` parameter in the `search` function is a callback function * that will be called on each node that matches the search criteria. It is of type `C`, which * extends `NodeCallback<BinaryTreeNode<K, V> | null>`. The default value for `callback` is `this._DEFAULT_NODE_CALLBACK` if * @param {K | BinaryTreeNode<K, V> | [K | null | undefined, V | undefined] | null | undefined } startNode - The `startNode` parameter in the `search` function is * used to specify the node from which the search operation should begin. It represents the starting * point in the binary tree where the search will be performed. If no specific `startNode` is * provided, the search operation will start from the root * @param {IterationType} iterationType - The `iterationType` parameter in the `search` function * specifies the type of iteration to be used when searching for nodes in a binary tree. It can have * two possible values: * @returns The `search` function returns an array of values that match the provided criteria based * on the search algorithm implemented within the function. */ search<C extends NodeCallback<BinaryTreeNode<K, V> | null>>( keyNodeEntryOrPredicate: | K | BinaryTreeNode<K, V> | [K | null | undefined, V | undefined] | null | undefined | NodePredicate<BinaryTreeNode<K, V> | null>, onlyOne = false, callback: C = this._DEFAULT_NODE_CALLBACK as C, startNode: K | BinaryTreeNode<K, V> | [K | null | undefined, V | undefined] | null | undefined = this._root, iterationType: IterationType = this.iterationType ): ReturnType<C>[] { if (keyNodeEntryOrPredicate === undefined) return []; if (keyNodeEntryOrPredicate === null) return []; startNode = this.ensureNode(startNode); if (!startNode) return []; const predicate = this._ensurePredicate(keyNodeEntryOrPredicate); const ans: ReturnType<C>[] = []; if (iterationType === 'RECURSIVE') { const dfs = (cur: BinaryTreeNode<K, V>) => { if (predicate(cur)) { ans.push(callback(cur)); if (onlyOne) return; } if (!this.isRealNode(cur.left) && !this.isRealNode(cur.right)) return; if (this.isRealNode(cur.left)) dfs(cur.left); if (this.isRealNode(cur.right)) dfs(cur.right); }; dfs(startNode); } else { const stack = [startNode]; while (stack.length > 0) { const cur = stack.pop(); if (this.isRealNode(cur)) { if (predicate(cur)) { ans.push(callback(cur)); if (onlyOne) return ans; } if (this.isRealNode(cur.left)) stack.push(cur.left); if (this.isRealNode(cur.right)) stack.push(cur.right); } } } return ans; } getNodes( keyNodeEntryOrPredicate: | K | BinaryTreeNode<K, V> | [K | null | undefined, V | undefined] | null | undefined | NodePredicate<BinaryTreeNode<K, V>>, onlyOne?: boolean, startNode?: K | BinaryTreeNode<K, V> | [K | null | undefined, V | undefined] | null | undefined, iterationType?: IterationType ): BinaryTreeNode<K, V>[]; /** * Time Complexity: O(n) * Space Complexity: O(k + log n) * * The function `getNodes` retrieves nodes from a binary tree based on a key, node, entry, raw data, * or predicate, with options for recursive or iterative traversal. * @param {K | BinaryTreeNode<K, V> | [K | null | undefined, V | undefined] | null | undefined | NodePredicate<BinaryTreeNode<K, V>>} keyNodeEntryOrPredicate * - The `getNodes` function you provided takes several parameters: * @param [onlyOne=false] - The `onlyOne` parameter in the `getNodes` function is a boolean flag that * determines whether to return only the first node that matches the criteria specified by the * `keyNodeEntryOrPredicate` parameter. If `onlyOne` is set to `true`, the function will * @param {K | BinaryTreeNode<K, V> | [K | null | undefined, V | undefined] | null | undefined } startNode - The `startNode` parameter in the * `getNodes` function is used to specify the starting point for traversing the binary tree. It * represents the root node of the binary tree or the node from which the traversal should begin. If * not provided, the default value is set to `this._root * @param {IterationType} iterationType - The `iterationType` parameter in the `getNodes` function * determines the type of iteration to be performed when traversing the nodes of a binary tree. It * can have two possible values: * @returns The `getNodes` function returns an array of nodes that satisfy the provided condition * based on the input parameters and the iteration type specified. */ getNodes( keyNodeEntryOrPredicate: | K | BinaryTreeNode<K, V> | [K | null | undefined, V | undefined] | null | undefined | NodePredicate<BinaryTreeNode<K, V> | null>, onlyOne = false, startNode: K | BinaryTreeNode<K, V> | [K | null | undefined, V | undefined] | null | undefined = this._root, iterationType: IterationType = this.iterationType ): (BinaryTreeNode<K, V> | null)[] { return this.search(keyNodeEntryOrPredicate, onlyOne, node => node, startNode, iterationType); } /** * Time Complexity: O(n) * Space Complexity: O(log n) * * The `getNode` function retrieves a node based on the provided key, node, entry, raw data, or * predicate. * @param {K | BinaryTreeNode<K, V> | [K | null | undefined, V | undefined] | null | undefined | NodePredicate<BinaryTreeNode<K, V>>} keyNodeEntryOrPredicate * - The `keyNodeEntryOrPredicate` parameter in the `getNode` function can accept a key, * node, entry, raw data, or a predicate function. * @param {K | BinaryTreeNode<K, V> | [K | null | undefined, V | undefined] | null | undefined } startNode - The `startNode` parameter in the * `getNode` function is used to specify the starting point for searching for a node in a binary * tree. If no specific starting point is provided, the default value is set to `this._root`, which * is typically the root node of the binary tree. * @param {IterationType} iterationType - The `iterationType` parameter in the `getNode` method is * used to specify the type of iteration to be performed when searching for a node. It has a default * value of `this.iterationType`, which means it will use the iteration type defined in the current * context if no specific value is provided * @returns The `getNode` function is returning the first node that matches the specified criteria, * or `null` if no matching node is found. */ getNode( keyNodeEntryOrPredicate: | K | BinaryTreeNode<K, V> | [K | null | undefined, V | undefined] | null | undefined | NodePredicate<BinaryTreeNode<K, V> | null>, startNode: K | BinaryTreeNode<K, V> | [K | null | undefined, V | undefined] | null | undefined = this._root, iterationType: IterationType = this.iterationType ): BinaryTreeNode<K, V> | null | undefined { return this.search(keyNodeEntryOrPredicate, true, node => node, startNode, iterationType)[0]; } /** * Time Complexity: O(n) * Space Complexity: O(log n) * * This function overrides the `get` method to retrieve the value associated with a specified key, * node, entry, raw data, or predicate in a data structure. * @param {K | BinaryTreeNode<K, V> | [K | null | undefined, V | undefined] | null | undefined | NodePredicate<BinaryTreeNode<K, V>>} keyNodeEntryOrPredicate * - The `keyNodeEntryOrPredicate` parameter in the `get` method can accept one of the * following types: * @param {K | BinaryTreeNode<K, V> | [K | null | undefined, V | undefined] | null | undefined } startNode - The `startNode` parameter in the `get` * method is used to specify the starting point for searching for a key or node in the binary tree. * If no specific starting point is provided, the default starting point is the root of the binary * tree (`this._root`). * @param {IterationType} iterationType - The `iterationType` parameter in the `get` method is used * to specify the type of iteration to be performed when searching for a key in the binary tree. It * is an optional parameter with a default value of `this.iterationType`, which means it will use the * iteration type defined in the * @returns The `get` method is returning the value associated with the specified key, node, entry, * raw data, or predicate in the binary tree map. If the specified key or node is found in the tree, * the method returns the corresponding value. If the key or node is not found, it returns * `undefined`. */ override get( keyNodeEntryOrPredicate: K | BinaryTreeNode<K, V> | [K | null | undefined, V | undefined] | null | undefined, startNode: K | BinaryTreeNode<K, V> | [K | null | undefined, V | undefined] | null | undefined = this._root, iterationType: IterationType = this.iterationType ): V | undefined { if (this._isMapMode) { const key = this._extractKey(keyNodeEntryOrPredicate); if (key === null || key === undefined) return; return this._store.get(key); } return this.getNode(keyNodeEntryOrPredicate, startNode, iterationType)?.value; } override has( keyNodeEntryOrPredicate?: | K | BinaryTreeNode<K, V> | [K | null | undefined, V | undefined] | null | undefined | NodePredicate<BinaryTreeNode<K, V>>, startNode?: K | BinaryTreeNode<K, V> | [K | null | undefined, V | undefined] | null | undefined, iterationType?: IterationType ): boolean; /** * Time Complexity: O(n) * Space Complexity: O(log n) * * The `has` function in TypeScript checks if a specified key, node, entry, raw data, or predicate * exists in the data structure. * @param {K | BinaryTreeNode<K, V> | [K | null | undefined, V | undefined] | null | undefined | NodePredicate<BinaryTreeNode<K, V>>} keyNodeEntryOrPredicate * - The `keyNodeEntryOrPredicate` parameter in the `override has` method can accept one of * the following types: * @param {K | BinaryTreeNode<K, V> | [K | null | undefined, V | undefined] | null | undefined } startNode - The `startNode` parameter in the * `override` method is used to specify the starting point for the search operation within the data * structure. It defaults to `this._root` if not provided explicitly. * @param {IterationType} iterationType - The `iterationType` parameter in the `override has` method * is used to specify the type of iteration to be performed. It has a default value of * `this.iterationType`, which means it will use the iteration type defined in the current context if * no value is provided when calling the method. * @returns The `override has` method is returning a boolean value. It checks if there are any nodes * that match the provided key, node, entry, raw data, or predicate in the tree structure. If there * are matching nodes, it returns `true`, indicating that the tree contains the specified element. * Otherwise, it returns `false`. */ override has( keyNodeEntryOrPredicate: | K | BinaryTreeNode<K, V> | [K | null | undefined, V | undefined] | null | undefined | NodePredicate<BinaryTreeNode<K, V> | null>, startNode: K | BinaryTreeNode<K, V> | [K | null | undefined, V | undefined] | null | undefined = this._root, iterationType: IterationType = this.iterationType ): boolean { return this.search(keyNodeEntryOrPredicate, true, node => node, startNode, iterationType).length > 0; } /** * Time Complexity: O(1) * Space Complexity: O(1) * * The clear function removes nodes and values in map mode. */ clear() { this._clearNodes(); if (this._isMapMode) this._clearValues(); } /** * Time Complexity: O(1) * Space Complexity: O(1) * * The `isEmpty` function in TypeScript checks if a data structure has no elements and returns a * boolean value. * @returns The `isEmpty()` method is returning a boolean value, specifically `true` if the `_size` * property is equal to 0, indicating that the data structure is empty, and `false` otherwise. */ isEmpty(): boolean { return this._size === 0; } /** * Time Complexity: O(n) * Space Complexity: O(log n) * * The function checks if a binary tree is perfectly balanced by comparing its minimum height with * its height. * @param {K | BinaryTreeNode<K, V> | [K | null | undefined, V | undefined] | null | undefined } startNode - The `startNode` parameter is the starting * point for checking if the binary tree is perfectly balanced. It represents the root node of the * binary tree or a specific node from which the balance check should begin. * @returns The method `isPerfectlyBalanced` is returning a boolean value, which indicates whether * the tree starting from the `startNode` node is perfectly balanced or not. The return value is * determined by comparing the minimum height of the tree with the height of the tree. If the minimum * height plus 1 is greater than or equal to the height of the tree, then it is considered perfectly * balanced and */ isPerfectlyBalanced( startNode: K | BinaryTreeNode<K, V> | [K | null | undefined, V | undefined] | null | undefined = this._root ): boolean { return this.getMinHeight(startNode) + 1 >= this.getHeight(startNode); } /** * Time Complexity: O(n) * Space Complexity: O(log n) * * The function `isBST` in TypeScript checks if a binary search tree is valid using either recursive * or iterative methods. * @param {K | BinaryTreeNode<K, V> | [K | null | undefined, V | undefined] | null | undefined } startNode - The `startNode` parameter in the `isBST` * function represents the starting point for checking whether a binary search tree (BST) is valid. * It can be a node in the BST or a reference to the root of the BST. If no specific node is * provided, the function will default to * @param {IterationType} iterationType - The `iterationType` parameter in the `isBST` function * determines whether the function should use a recursive approach or an iterative approach to check * if the binary search tree (BST) is valid. * @returns The `isBST` method is returning a boolean value, which indicates whether the binary * search tree (BST) represented by the given root node is a valid BST or not. The method checks if * the tree satisfies the BST property, where for every node, all nodes in its left subtree have keys * less than the node's key, and all nodes in its right subtree have keys greater than the node's */ isBST( startNode: K | BinaryTreeNode<K, V> | [K | null | undefined, V | undefined] | null | undefined = this._root, iterationType: IterationType = this.iterationType ): boolean { // TODO there is a bug startNode = this.ensureNode(startNode); if (!startNode) return true; if (iterationType === 'RECURSIVE') { const dfs = (cur: BinaryTreeNode<K, V> | null | undefined, min: number, max: number): boolean => { if (!this.isRealNode(cur)) return true; const numKey = Number(cur.key); if (numKey <= min || numKey >= max) return false; return dfs(cur.left, min, numKey) && dfs(cur.right, numKey, max); }; const isStandardBST = dfs(startNode, Number.MIN_SAFE_INTEGER, Number.MAX_SAFE_INTEGER); const isInverseBST = dfs(startNode, Number.MAX_SAFE_INTEGER, Number.MIN_SAFE_INTEGER); return isStandardBST || isInverseBST; } else { const checkBST = (checkMax = false) => { const stack = []; let prev = checkMax ? Number.MAX_SAFE_INTEGER : Number.MIN_SAFE_INTEGER; // @ts-ignore let curr: BinaryTreeNode<K, V> | null | undefined = startNode; while (this.isRealNode(curr) || stack.length > 0) { while (this.isRealNode(curr)) { stack.push(curr); curr = curr.left; } curr = stack.pop()!; const numKey = Number(curr.key); if (!this.isRealNode(curr) || (!checkMax && prev >= numKey) || (checkMax && prev <= numKey)) return false; prev = numKey; curr = curr.right; } return true; }; const isStandardBST = checkBST(false), isInverseBST = checkBST(true); return isStandardBST || isInverseBST; } } /** * Time Complexity: O(n) * Space Complexity: O(log n) * * The `getDepth` function calculates the depth between two nodes in a binary tree. * @param {K | BinaryTreeNode<K, V> | [K | null | undefined, V | undefined] | null | undefined } dist - The `dist` parameter in the `getDepth` * function represents the node or entry in a binary tree map, or a reference to a node in the tree. * It is the target node for which you want to calculate the depth from the `startNode` node. * @param {K | BinaryTreeNode<K, V> | [K | null | undefined, V | undefined] | null | undefined } startNode - The `startNode` parameter in the * `getDepth` function represents the starting point from which you want to calculate the depth of a * given node or entry in a binary tree. If no specific starting point is provided, the default value * for `startNode` is set to the root of the binary * @returns The `getDepth` method returns the depth of a given node `dist` relative to the * `startNode` node in a binary tree. If the `dist` node is not found in the path to the `startNode` * node, it returns the depth of the `dist` node from the root of the tree. */ getDepth( dist: K | BinaryTreeNode<K, V> | [K | null | undefined, V | undefined] | null | undefined, startNode: K | BinaryTreeNode<K, V> | [K | null | undefined, V | undefined] | null | undefined = this._root ): number { let distEnsured = this.ensureNode(dist); const beginRootEnsured = this.ensureNode(startNode); let depth = 0; while (distEnsured?.parent) { if (distEnsured === beginRootEnsured) { return depth; } depth++; distEnsured = distEnsured.parent; } return depth; } /** * Time Complexity: O(n) * Space Complexity: O(log n) * * The `getHeight` function calculates the maximum height of a binary tree using either a recursive * or iterative approach in TypeScript. * @param {K | BinaryTreeNode<K, V> | [K | null | undefined, V | undefined] | null | undefined } startNode - The `startNode` parameter is the starting * point from which the height of the binary tree will be calculated. It can be a node in the binary * tree or a reference to the root of the tree. If not provided, it defaults to the root of the * binary tree data structure. * @param {IterationType} iterationType - The `iterationType` parameter is used to determine the type * of iteration to be performed while calculating the height of the binary tree. It can have two * possible values: * @returns The `getHeight` method returns the height of the binary tree starting from the specified * root node. The height is calculated based on the maximum