UNPKG

doubly-linked-list-typed

Version:
642 lines (641 loc) 27.9 kB
"use strict"; Object.defineProperty(exports, "__esModule", { value: true }); exports.RedBlackTree = exports.RedBlackTreeNode = void 0; const bst_1 = require("./bst"); class RedBlackTreeNode extends bst_1.BSTNode { /** * The constructor initializes a node with a key, value, and color for a Red-Black Tree. * @param {K} key - The `key` parameter is a key of type `K` that is used to identify the node in a * Red-Black Tree data structure. * @param {V} [value] - The `value` parameter in the constructor is an optional parameter of type * `V`. It represents the value associated with the key in the data structure being constructed. * @param {RBTNColor} [color=BLACK] - The `color` parameter in the constructor is used to specify the * color of the node in a Red-Black Tree. It has a default value of 'BLACK' if not provided * explicitly. */ constructor(key, value, color = 'BLACK') { super(key, value); this.parent = undefined; this._left = undefined; this._right = undefined; this._color = color; } get left() { return this._left; } set left(v) { if (v) { v.parent = this; } this._left = v; } get right() { return this._right; } set right(v) { if (v) { v.parent = this; } this._right = v; } } exports.RedBlackTreeNode = RedBlackTreeNode; /** * 1. Efficient self-balancing, but not completely balanced. Compared with AVLTree, the addition and deletion efficiency is high but the query efficiency is slightly lower. * 2. It is BST itself. Compared with Heap which is not completely ordered, RedBlackTree is completely ordered. * @example * // using Red-Black Tree as a price-based index for stock data * // Define the structure of individual stock records * interface StockRecord { * price: number; // Stock price (key for indexing) * symbol: string; // Stock ticker symbol * volume: number; // Trade volume * } * * // Simulate stock market data as it might come from an external feed * const marketStockData: StockRecord[] = [ * { price: 142.5, symbol: 'AAPL', volume: 1000000 }, * { price: 335.2, symbol: 'MSFT', volume: 800000 }, * { price: 3285.04, symbol: 'AMZN', volume: 500000 }, * { price: 267.98, symbol: 'META', volume: 750000 }, * { price: 234.57, symbol: 'GOOGL', volume: 900000 } * ]; * * // Extend the stock record type to include metadata for database usage * type StockTableRecord = StockRecord & { lastUpdated: Date }; * * // Create a Red-Black Tree to index stock records by price * // Simulates a database index with stock price as the key for quick lookups * const priceIndex = new RedBlackTree<number, StockTableRecord, StockRecord>(marketStockData, { * toEntryFn: stockRecord => [ * stockRecord.price, // Use stock price as the key * { * ...stockRecord, * lastUpdated: new Date() // Add a timestamp for when the record was indexed * } * ] * }); * * // Query the stock with the highest price * const highestPricedStock = priceIndex.getRightMost(); * console.log(priceIndex.get(highestPricedStock)?.symbol); // 'AMZN' // Amazon has the highest price * * // Query stocks within a specific price range (200 to 400) * const stocksInRange = priceIndex.rangeSearch( * [200, 400], // Price range * node => priceIndex.get(node)?.symbol // Extract stock symbols for the result * ); * console.log(stocksInRange); // ['GOOGL', 'META', 'MSFT'] */ class RedBlackTree extends bst_1.BST { /** * This TypeScript constructor initializes a Red-Black Tree with optional keys, nodes, entries, or * raw data. * @param keysNodesEntriesOrRaws - The `keysNodesEntriesOrRaws` parameter in the constructor is an * iterable that can contain either `K | RedBlackTreeNode<K, V> | [K | null | undefined, V | undefined] | null | undefined` objects or `R` objects. It * is used to initialize the Red-Black Tree with keys, nodes, entries, or * @param [options] - The `options` parameter in the constructor is of type `RedBlackTreeOptions<K, * V, R>`. It is an optional parameter that allows you to specify additional options for the * RedBlackTree class. These options could include configuration settings, behavior customization, or * any other parameters that are specific to */ constructor(keysNodesEntriesOrRaws = [], options) { super([], options); this._root = this.NIL; if (keysNodesEntriesOrRaws) { this.addMany(keysNodesEntriesOrRaws); } } get root() { return this._root; } /** * Time Complexity: O(1) * Space Complexity: O(1) * * The function creates a new Red-Black Tree node with the specified key, value, and color. * @param {K} key - The key parameter represents the key value of the node being created. It is of * type K, which is a generic type that can be replaced with any specific type when using the * function. * @param {V} [value] - The `value` parameter is an optional parameter that represents the value * associated with the key in the node. It is not required and can be omitted if you only need to * create a node with a key. * @param {RBTNColor} [color=BLACK] - The "color" parameter is used to specify the color of the node * in a Red-Black Tree. It can have two possible values: "RED" or "BLACK". By default, the color is * set to "BLACK" if not specified. * @returns A new instance of a RedBlackTreeNode with the specified key, value, and color is being * returned. */ createNode(key, value, color = 'BLACK') { return new RedBlackTreeNode(key, this._isMapMode ? undefined : value, color); } /** * Time Complexity: O(1) * Space Complexity: O(1) * * The function creates a new Red-Black Tree with the specified options. * @param [options] - The `options` parameter is an optional object that contains additional * configuration options for creating the Red-Black Tree. It has the following properties: * @returns a new instance of a RedBlackTree object. */ createTree(options) { return new RedBlackTree([], Object.assign({ iterationType: this.iterationType, isMapMode: this._isMapMode, specifyComparable: this._specifyComparable, toEntryFn: this._toEntryFn }, options)); } /** * Time Complexity: O(1) * Space Complexity: O(1) * * The function checks if the input is an instance of the RedBlackTreeNode class. * @param {K | RedBlackTreeNode<K, V> | [K | null | undefined, V | undefined] | null | undefined} keyNodeOrEntry - The parameter * `keyNodeOrEntry` can be of type `R` or `K | RedBlackTreeNode<K, V> | [K | null | undefined, V | undefined] | null | undefined`. * @returns a boolean value indicating whether the input parameter `keyNodeOrEntry` is * an instance of the `RedBlackTreeNode` class. */ isNode(keyNodeOrEntry) { return keyNodeOrEntry instanceof RedBlackTreeNode; } /** * Time Complexity: O(1) * Space Complexity: O(1) * * The "clear" function sets the root node of a data structure to a sentinel value and resets the * size counter to zero. */ clear() { super.clear(); this._root = this.NIL; } /** * Time Complexity: O(log n) * Space Complexity: O(log n) * * The function adds a new node to a binary search tree and returns true if the node was successfully * added. * @param {K | RedBlackTreeNode<K, V> | [K | null | undefined, V | undefined] | null | undefined} keyNodeOrEntry - The parameter * `keyNodeOrEntry` can accept a value of type `R` or `K | RedBlackTreeNode<K, V> | [K | null | undefined, V | undefined] | null | undefined`. * @param {V} [value] - The `value` parameter is an optional value that you want to associate with * the key in the data structure. It represents the value that you want to add or update in the data * structure. * @returns The method is returning a boolean value. If a new node is successfully added to the tree, * the method returns true. If the node already exists and its value is updated, the method also * returns true. If the node cannot be added or updated, the method returns false. */ add(keyNodeOrEntry, value) { const [newNode, newValue] = this._keyValueNodeOrEntryToNodeAndValue(keyNodeOrEntry, value); if (!this.isRealNode(newNode)) return false; const insertStatus = this._insert(newNode); if (insertStatus === 'CREATED') { // Ensure the root is black if (this.isRealNode(this._root)) { this._root.color = 'BLACK'; } else { return false; } if (this._isMapMode) this._setValue(newNode.key, newValue); this._size++; return true; } if (insertStatus === 'UPDATED') { if (this._isMapMode) this._setValue(newNode.key, newValue); return true; } return false; } /** * Time Complexity: O(log n) * Space Complexity: O(log n) * * The function overrides the delete method in a binary tree data structure to remove a node based on * a given predicate and maintain the binary search tree properties. * @param {K | RedBlackTreeNode<K, V> | [K | null | undefined, V | undefined] | null | undefined} keyNodeOrEntry - The `keyNodeOrEntry` * parameter in the `override delete` method is used to specify the condition or key based on which a * node should be deleted from the binary tree. It can be a key, a node, an entry, or a predicate * function that determines which node(s) should be deleted. * @returns The `override delete` method is returning an array of `BinaryTreeDeleteResult<RedBlackTreeNode<K, V>>` * objects. Each object in the array contains information about the deleted node and whether * balancing is needed. */ delete(keyNodeOrEntry) { if (keyNodeOrEntry === null) return []; const results = []; let nodeToDelete; if (this._isPredicate(keyNodeOrEntry)) nodeToDelete = this.getNode(keyNodeOrEntry); else nodeToDelete = this.isRealNode(keyNodeOrEntry) ? keyNodeOrEntry : this.getNode(keyNodeOrEntry); if (!nodeToDelete) { return results; } let originalColor = nodeToDelete.color; let replacementNode; if (!this.isRealNode(nodeToDelete.left)) { if (nodeToDelete.right !== null) { replacementNode = nodeToDelete.right; this._transplant(nodeToDelete, nodeToDelete.right); } } else if (!this.isRealNode(nodeToDelete.right)) { replacementNode = nodeToDelete.left; this._transplant(nodeToDelete, nodeToDelete.left); } else { const successor = this.getLeftMost(node => node, nodeToDelete.right); if (successor) { originalColor = successor.color; if (successor.right !== null) replacementNode = successor.right; if (successor.parent === nodeToDelete) { if (this.isRealNode(replacementNode)) { replacementNode.parent = successor; } } else { if (successor.right !== null) { this._transplant(successor, successor.right); successor.right = nodeToDelete.right; } if (this.isRealNode(successor.right)) { successor.right.parent = successor; } } this._transplant(nodeToDelete, successor); successor.left = nodeToDelete.left; if (this.isRealNode(successor.left)) { successor.left.parent = successor; } successor.color = nodeToDelete.color; } } if (this._isMapMode) this._store.delete(nodeToDelete.key); this._size--; // If the original color was black, fix the tree if (originalColor === 'BLACK') { this._deleteFixup(replacementNode); } results.push({ deleted: nodeToDelete, needBalanced: undefined }); return results; } /** * Time Complexity: O(n) * Space Complexity: O(n) * * The `map` function in TypeScript overrides the default behavior to create a new Red-Black Tree by * applying a callback to each entry in the original tree. * @param callback - A function that will be called for each entry in the tree, with parameters * representing the key, value, index, and the tree itself. It should return an entry for the new * tree. * @param [options] - The `options` parameter in the `map` method is of type `RedBlackTreeOptions<MK, MV, * MR>`. This parameter allows you to specify additional options or configurations for the Red-Black * Tree that will be created during the mapping process. These options could include things like * custom comparators * @param {any} [thisArg] - The `thisArg` parameter in the `override map` function is used to specify * the value of `this` when executing the `callback` function. It allows you to set the context * (value of `this`) for the callback function. This can be useful when you want to access properties * or * @returns A new Red-Black Tree is being returned, where each entry has been transformed using the * provided callback function. */ map(callback, options, thisArg) { const newTree = new RedBlackTree([], options); let index = 0; for (const [key, value] of this) { newTree.add(callback.call(thisArg, key, value, index++, this)); } return newTree; } /** * Time Complexity: O(n) * Space Complexity: O(n) * * The function `clone` overrides the default cloning behavior to create a deep copy of a tree * structure. * @returns The `cloned` object is being returned. */ clone() { const cloned = this.createTree(); this._clone(cloned); return cloned; } /** * Time Complexity: O(1) * Space Complexity: O(1) * * The function sets the root of a tree-like structure and updates the parent property of the new * root. * @param {RedBlackTreeNode<K, V> | undefined} v - v is a parameter of type RedBlackTreeNode<K, V> or undefined. */ _setRoot(v) { if (v) { v.parent = undefined; } this._root = v; } /** * Time Complexity: O(1) * Space Complexity: O(1) * * The function replaces an old node with a new node while preserving the color of the old node. * @param {RedBlackTreeNode<K, V>} oldNode - The `oldNode` parameter represents the node that needs to be replaced in * the data structure. * @param {RedBlackTreeNode<K, V>} newNode - The `newNode` parameter is of type `RedBlackTreeNode<K, V>`, which represents a node in a * data structure. * @returns The method is returning the result of calling the `_replaceNode` method from the * superclass, with the `oldNode` and `newNode` parameters. */ _replaceNode(oldNode, newNode) { newNode.color = oldNode.color; return super._replaceNode(oldNode, newNode); } /** * Time Complexity: O(log n) * Space Complexity: O(log n) * * The `_insert` function inserts a node into a binary search tree and performs necessary fix-ups to * maintain the red-black tree properties. * @param {RedBlackTreeNode<K, V>} node - The `node` parameter represents the node that needs to be inserted into the * binary search tree. * @returns a string value indicating the result of the insertion operation. It can return either * 'UPDATED' if the node with the same key already exists and was updated, or 'CREATED' if a new node * was created and inserted into the tree. */ _insert(node) { var _a, _b; let current = this.root; let parent = undefined; while (this.isRealNode(current)) { parent = current; const compared = this._compare(node.key, current.key); if (compared < 0) { current = (_a = current.left) !== null && _a !== void 0 ? _a : this.NIL; } else if (compared > 0) { current = (_b = current.right) !== null && _b !== void 0 ? _b : this.NIL; } else { this._replaceNode(current, node); return 'UPDATED'; } } node.parent = parent; if (!parent) { this._setRoot(node); } else if (this._compare(node.key, parent.key) < 0) { parent.left = node; } else { parent.right = node; } node.left = this.NIL; node.right = this.NIL; node.color = 'RED'; this._insertFixup(node); return 'CREATED'; } /** * Time Complexity: O(1) * Space Complexity: O(1) * * The function `_transplant` is used to replace a node `u` with another node `v` in a binary tree. * @param {RedBlackTreeNode<K, V>} u - The parameter "u" represents a node in a binary tree. * @param {RedBlackTreeNode<K, V> | undefined} v - The parameter `v` is of type `RedBlackTreeNode<K, V> | undefined`, which means it can * either be a `RedBlackTreeNode<K, V>` object or `undefined`. */ _transplant(u, v) { if (!u.parent) { this._setRoot(v); } else if (u === u.parent.left) { u.parent.left = v; } else { u.parent.right = v; } if (v) { v.parent = u.parent; } } /** * Time Complexity: O(log n) * Space Complexity: O(1) * * The `_insertFixup` function is used to fix the Red-Black Tree after inserting a new node. * @param {RedBlackTreeNode<K, V> | undefined} z - The parameter `z` represents a node in the Red-Black Tree data * structure. It can either be a valid node or `undefined`. */ _insertFixup(z) { var _a, _b, _c, _d, _e; // Continue fixing the tree as long as the parent of z is red while (((_a = z === null || z === void 0 ? void 0 : z.parent) === null || _a === void 0 ? void 0 : _a.color) === 'RED') { // Check if the parent of z is the left child of its parent if (z.parent === ((_b = z.parent.parent) === null || _b === void 0 ? void 0 : _b.left)) { // Case 1: The uncle (y) of z is red const y = z.parent.parent.right; if ((y === null || y === void 0 ? void 0 : y.color) === 'RED') { // Set colors to restore properties of Red-Black Tree z.parent.color = 'BLACK'; y.color = 'BLACK'; z.parent.parent.color = 'RED'; // Move up the tree to continue fixing z = z.parent.parent; } else { // Case 2: The uncle (y) of z is black, and z is a right child if (z === z.parent.right) { // Perform a left rotation to transform the case into Case 3 z = z.parent; this._leftRotate(z); } // Case 3: The uncle (y) of z is black, and z is a left child // Adjust colors and perform a right rotation if (z && this.isRealNode(z.parent) && this.isRealNode(z.parent.parent)) { z.parent.color = 'BLACK'; z.parent.parent.color = 'RED'; this._rightRotate(z.parent.parent); } } } else { // Symmetric case for the right child (left and right exchanged) // Follow the same logic as above with left and right exchanged const y = (_e = (_d = (_c = z === null || z === void 0 ? void 0 : z.parent) === null || _c === void 0 ? void 0 : _c.parent) === null || _d === void 0 ? void 0 : _d.left) !== null && _e !== void 0 ? _e : undefined; if ((y === null || y === void 0 ? void 0 : y.color) === 'RED') { z.parent.color = 'BLACK'; y.color = 'BLACK'; z.parent.parent.color = 'RED'; z = z.parent.parent; } else { if (z === z.parent.left) { z = z.parent; this._rightRotate(z); } if (z && this.isRealNode(z.parent) && this.isRealNode(z.parent.parent)) { z.parent.color = 'BLACK'; z.parent.parent.color = 'RED'; this._leftRotate(z.parent.parent); } } } } // Ensure that the root is black after fixing if (this.isRealNode(this._root)) this._root.color = 'BLACK'; } /** * Time Complexity: O(log n) * Space Complexity: O(1) * * The `_deleteFixup` function is used to fix the red-black tree after a node deletion by adjusting * the colors and performing rotations. * @param {RedBlackTreeNode<K, V> | undefined} node - The `node` parameter represents a node in a binary tree. It can * be either a valid node object or `undefined`. * @returns The function does not return any value. It has a return type of `void`, which means it * does not return anything. */ _deleteFixup(node) { var _a, _b, _c, _d; // Early exit condition if (!node || node === this.root || node.color === 'BLACK') { if (node) { node.color = 'BLACK'; // Ensure the final node is black } return; } while (node && node !== this.root && node.color === 'BLACK') { const parent = node.parent; if (!parent) { break; // Ensure the loop terminates if there's an issue with the tree structure } if (node === parent.left) { let sibling = parent.right; // Cases 1 and 2: Sibling is red or both children of sibling are black if ((sibling === null || sibling === void 0 ? void 0 : sibling.color) === 'RED') { sibling.color = 'BLACK'; parent.color = 'RED'; this._leftRotate(parent); sibling = parent.right; } // Case 3: Sibling's left child is black if (((_b = (_a = sibling === null || sibling === void 0 ? void 0 : sibling.left) === null || _a === void 0 ? void 0 : _a.color) !== null && _b !== void 0 ? _b : 'BLACK') === 'BLACK') { if (sibling) sibling.color = 'RED'; node = parent; } else { // Case 4: Adjust colors and perform a right rotation if (sibling === null || sibling === void 0 ? void 0 : sibling.left) sibling.left.color = 'BLACK'; if (sibling) sibling.color = parent.color; parent.color = 'BLACK'; this._rightRotate(parent); node = this.root; } } else { // Symmetric case for the right child (left and right exchanged) let sibling = parent.left; // Cases 1 and 2: Sibling is red or both children of sibling are black if ((sibling === null || sibling === void 0 ? void 0 : sibling.color) === 'RED') { sibling.color = 'BLACK'; if (parent) parent.color = 'RED'; this._rightRotate(parent); if (parent) sibling = parent.left; } // Case 3: Sibling's left child is black if (((_d = (_c = sibling === null || sibling === void 0 ? void 0 : sibling.right) === null || _c === void 0 ? void 0 : _c.color) !== null && _d !== void 0 ? _d : 'BLACK') === 'BLACK') { if (sibling) sibling.color = 'RED'; node = parent; } else { // Case 4: Adjust colors and perform a left rotation if (sibling === null || sibling === void 0 ? void 0 : sibling.right) sibling.right.color = 'BLACK'; if (sibling) sibling.color = parent.color; if (parent) parent.color = 'BLACK'; this._leftRotate(parent); node = this.root; } } } // Ensure that the final node (possibly the root) is black if (node) { node.color = 'BLACK'; } } /** * Time Complexity: O(1) * Space Complexity: O(1) * * The `_leftRotate` function performs a left rotation on a given node in a binary tree. * @param {RedBlackTreeNode<K, V> | undefined} x - The parameter `x` is of type `RedBlackTreeNode<K, V> | undefined`. It represents a * node in a binary tree or `undefined` if there is no node. * @returns void, which means it does not return any value. */ _leftRotate(x) { if (!x || !x.right) { return; } const y = x.right; x.right = y.left; if (this.isRealNode(y.left)) { y.left.parent = x; } y.parent = x.parent; if (!x.parent) { this._setRoot(y); } else if (x === x.parent.left) { x.parent.left = y; } else { x.parent.right = y; } y.left = x; x.parent = y; } /** * Time Complexity: O(1) * Space Complexity: O(1) * * The `_rightRotate` function performs a right rotation on a given node in a binary tree. * @param {RedBlackTreeNode<K, V> | undefined} y - The parameter `y` is of type `RedBlackTreeNode<K, V> | undefined`. It represents a * node in a binary tree or `undefined` if there is no node. * @returns void, which means it does not return any value. */ _rightRotate(y) { if (!y || !y.left) { return; } const x = y.left; y.left = x.right; if (this.isRealNode(x.right)) { x.right.parent = y; } x.parent = y.parent; if (!y.parent) { this._setRoot(x); } else if (y === y.parent.left) { y.parent.left = x; } else { y.parent.right = x; } x.right = y; y.parent = x; } } exports.RedBlackTree = RedBlackTree;