doubly-linked-list-typed
Version:
Doubly Linked List
642 lines (641 loc) • 27.9 kB
JavaScript
"use strict";
Object.defineProperty(exports, "__esModule", { value: true });
exports.RedBlackTree = exports.RedBlackTreeNode = void 0;
const bst_1 = require("./bst");
class RedBlackTreeNode extends bst_1.BSTNode {
/**
* The constructor initializes a node with a key, value, and color for a Red-Black Tree.
* @param {K} key - The `key` parameter is a key of type `K` that is used to identify the node in a
* Red-Black Tree data structure.
* @param {V} [value] - The `value` parameter in the constructor is an optional parameter of type
* `V`. It represents the value associated with the key in the data structure being constructed.
* @param {RBTNColor} [color=BLACK] - The `color` parameter in the constructor is used to specify the
* color of the node in a Red-Black Tree. It has a default value of 'BLACK' if not provided
* explicitly.
*/
constructor(key, value, color = 'BLACK') {
super(key, value);
this.parent = undefined;
this._left = undefined;
this._right = undefined;
this._color = color;
}
get left() {
return this._left;
}
set left(v) {
if (v) {
v.parent = this;
}
this._left = v;
}
get right() {
return this._right;
}
set right(v) {
if (v) {
v.parent = this;
}
this._right = v;
}
}
exports.RedBlackTreeNode = RedBlackTreeNode;
/**
* 1. Efficient self-balancing, but not completely balanced. Compared with AVLTree, the addition and deletion efficiency is high but the query efficiency is slightly lower.
* 2. It is BST itself. Compared with Heap which is not completely ordered, RedBlackTree is completely ordered.
* @example
* // using Red-Black Tree as a price-based index for stock data
* // Define the structure of individual stock records
* interface StockRecord {
* price: number; // Stock price (key for indexing)
* symbol: string; // Stock ticker symbol
* volume: number; // Trade volume
* }
*
* // Simulate stock market data as it might come from an external feed
* const marketStockData: StockRecord[] = [
* { price: 142.5, symbol: 'AAPL', volume: 1000000 },
* { price: 335.2, symbol: 'MSFT', volume: 800000 },
* { price: 3285.04, symbol: 'AMZN', volume: 500000 },
* { price: 267.98, symbol: 'META', volume: 750000 },
* { price: 234.57, symbol: 'GOOGL', volume: 900000 }
* ];
*
* // Extend the stock record type to include metadata for database usage
* type StockTableRecord = StockRecord & { lastUpdated: Date };
*
* // Create a Red-Black Tree to index stock records by price
* // Simulates a database index with stock price as the key for quick lookups
* const priceIndex = new RedBlackTree<number, StockTableRecord, StockRecord>(marketStockData, {
* toEntryFn: stockRecord => [
* stockRecord.price, // Use stock price as the key
* {
* ...stockRecord,
* lastUpdated: new Date() // Add a timestamp for when the record was indexed
* }
* ]
* });
*
* // Query the stock with the highest price
* const highestPricedStock = priceIndex.getRightMost();
* console.log(priceIndex.get(highestPricedStock)?.symbol); // 'AMZN' // Amazon has the highest price
*
* // Query stocks within a specific price range (200 to 400)
* const stocksInRange = priceIndex.rangeSearch(
* [200, 400], // Price range
* node => priceIndex.get(node)?.symbol // Extract stock symbols for the result
* );
* console.log(stocksInRange); // ['GOOGL', 'META', 'MSFT']
*/
class RedBlackTree extends bst_1.BST {
/**
* This TypeScript constructor initializes a Red-Black Tree with optional keys, nodes, entries, or
* raw data.
* @param keysNodesEntriesOrRaws - The `keysNodesEntriesOrRaws` parameter in the constructor is an
* iterable that can contain either `K | RedBlackTreeNode<K, V> | [K | null | undefined, V | undefined] | null | undefined` objects or `R` objects. It
* is used to initialize the Red-Black Tree with keys, nodes, entries, or
* @param [options] - The `options` parameter in the constructor is of type `RedBlackTreeOptions<K,
* V, R>`. It is an optional parameter that allows you to specify additional options for the
* RedBlackTree class. These options could include configuration settings, behavior customization, or
* any other parameters that are specific to
*/
constructor(keysNodesEntriesOrRaws = [], options) {
super([], options);
this._root = this.NIL;
if (keysNodesEntriesOrRaws) {
this.addMany(keysNodesEntriesOrRaws);
}
}
get root() {
return this._root;
}
/**
* Time Complexity: O(1)
* Space Complexity: O(1)
*
* The function creates a new Red-Black Tree node with the specified key, value, and color.
* @param {K} key - The key parameter represents the key value of the node being created. It is of
* type K, which is a generic type that can be replaced with any specific type when using the
* function.
* @param {V} [value] - The `value` parameter is an optional parameter that represents the value
* associated with the key in the node. It is not required and can be omitted if you only need to
* create a node with a key.
* @param {RBTNColor} [color=BLACK] - The "color" parameter is used to specify the color of the node
* in a Red-Black Tree. It can have two possible values: "RED" or "BLACK". By default, the color is
* set to "BLACK" if not specified.
* @returns A new instance of a RedBlackTreeNode with the specified key, value, and color is being
* returned.
*/
createNode(key, value, color = 'BLACK') {
return new RedBlackTreeNode(key, this._isMapMode ? undefined : value, color);
}
/**
* Time Complexity: O(1)
* Space Complexity: O(1)
*
* The function creates a new Red-Black Tree with the specified options.
* @param [options] - The `options` parameter is an optional object that contains additional
* configuration options for creating the Red-Black Tree. It has the following properties:
* @returns a new instance of a RedBlackTree object.
*/
createTree(options) {
return new RedBlackTree([], Object.assign({ iterationType: this.iterationType, isMapMode: this._isMapMode, specifyComparable: this._specifyComparable, toEntryFn: this._toEntryFn }, options));
}
/**
* Time Complexity: O(1)
* Space Complexity: O(1)
*
* The function checks if the input is an instance of the RedBlackTreeNode class.
* @param {K | RedBlackTreeNode<K, V> | [K | null | undefined, V | undefined] | null | undefined} keyNodeOrEntry - The parameter
* `keyNodeOrEntry` can be of type `R` or `K | RedBlackTreeNode<K, V> | [K | null | undefined, V | undefined] | null | undefined`.
* @returns a boolean value indicating whether the input parameter `keyNodeOrEntry` is
* an instance of the `RedBlackTreeNode` class.
*/
isNode(keyNodeOrEntry) {
return keyNodeOrEntry instanceof RedBlackTreeNode;
}
/**
* Time Complexity: O(1)
* Space Complexity: O(1)
*
* The "clear" function sets the root node of a data structure to a sentinel value and resets the
* size counter to zero.
*/
clear() {
super.clear();
this._root = this.NIL;
}
/**
* Time Complexity: O(log n)
* Space Complexity: O(log n)
*
* The function adds a new node to a binary search tree and returns true if the node was successfully
* added.
* @param {K | RedBlackTreeNode<K, V> | [K | null | undefined, V | undefined] | null | undefined} keyNodeOrEntry - The parameter
* `keyNodeOrEntry` can accept a value of type `R` or `K | RedBlackTreeNode<K, V> | [K | null | undefined, V | undefined] | null | undefined`.
* @param {V} [value] - The `value` parameter is an optional value that you want to associate with
* the key in the data structure. It represents the value that you want to add or update in the data
* structure.
* @returns The method is returning a boolean value. If a new node is successfully added to the tree,
* the method returns true. If the node already exists and its value is updated, the method also
* returns true. If the node cannot be added or updated, the method returns false.
*/
add(keyNodeOrEntry, value) {
const [newNode, newValue] = this._keyValueNodeOrEntryToNodeAndValue(keyNodeOrEntry, value);
if (!this.isRealNode(newNode))
return false;
const insertStatus = this._insert(newNode);
if (insertStatus === 'CREATED') {
// Ensure the root is black
if (this.isRealNode(this._root)) {
this._root.color = 'BLACK';
}
else {
return false;
}
if (this._isMapMode)
this._setValue(newNode.key, newValue);
this._size++;
return true;
}
if (insertStatus === 'UPDATED') {
if (this._isMapMode)
this._setValue(newNode.key, newValue);
return true;
}
return false;
}
/**
* Time Complexity: O(log n)
* Space Complexity: O(log n)
*
* The function overrides the delete method in a binary tree data structure to remove a node based on
* a given predicate and maintain the binary search tree properties.
* @param {K | RedBlackTreeNode<K, V> | [K | null | undefined, V | undefined] | null | undefined} keyNodeOrEntry - The `keyNodeOrEntry`
* parameter in the `override delete` method is used to specify the condition or key based on which a
* node should be deleted from the binary tree. It can be a key, a node, an entry, or a predicate
* function that determines which node(s) should be deleted.
* @returns The `override delete` method is returning an array of `BinaryTreeDeleteResult<RedBlackTreeNode<K, V>>`
* objects. Each object in the array contains information about the deleted node and whether
* balancing is needed.
*/
delete(keyNodeOrEntry) {
if (keyNodeOrEntry === null)
return [];
const results = [];
let nodeToDelete;
if (this._isPredicate(keyNodeOrEntry))
nodeToDelete = this.getNode(keyNodeOrEntry);
else
nodeToDelete = this.isRealNode(keyNodeOrEntry) ? keyNodeOrEntry : this.getNode(keyNodeOrEntry);
if (!nodeToDelete) {
return results;
}
let originalColor = nodeToDelete.color;
let replacementNode;
if (!this.isRealNode(nodeToDelete.left)) {
if (nodeToDelete.right !== null) {
replacementNode = nodeToDelete.right;
this._transplant(nodeToDelete, nodeToDelete.right);
}
}
else if (!this.isRealNode(nodeToDelete.right)) {
replacementNode = nodeToDelete.left;
this._transplant(nodeToDelete, nodeToDelete.left);
}
else {
const successor = this.getLeftMost(node => node, nodeToDelete.right);
if (successor) {
originalColor = successor.color;
if (successor.right !== null)
replacementNode = successor.right;
if (successor.parent === nodeToDelete) {
if (this.isRealNode(replacementNode)) {
replacementNode.parent = successor;
}
}
else {
if (successor.right !== null) {
this._transplant(successor, successor.right);
successor.right = nodeToDelete.right;
}
if (this.isRealNode(successor.right)) {
successor.right.parent = successor;
}
}
this._transplant(nodeToDelete, successor);
successor.left = nodeToDelete.left;
if (this.isRealNode(successor.left)) {
successor.left.parent = successor;
}
successor.color = nodeToDelete.color;
}
}
if (this._isMapMode)
this._store.delete(nodeToDelete.key);
this._size--;
// If the original color was black, fix the tree
if (originalColor === 'BLACK') {
this._deleteFixup(replacementNode);
}
results.push({ deleted: nodeToDelete, needBalanced: undefined });
return results;
}
/**
* Time Complexity: O(n)
* Space Complexity: O(n)
*
* The `map` function in TypeScript overrides the default behavior to create a new Red-Black Tree by
* applying a callback to each entry in the original tree.
* @param callback - A function that will be called for each entry in the tree, with parameters
* representing the key, value, index, and the tree itself. It should return an entry for the new
* tree.
* @param [options] - The `options` parameter in the `map` method is of type `RedBlackTreeOptions<MK, MV,
* MR>`. This parameter allows you to specify additional options or configurations for the Red-Black
* Tree that will be created during the mapping process. These options could include things like
* custom comparators
* @param {any} [thisArg] - The `thisArg` parameter in the `override map` function is used to specify
* the value of `this` when executing the `callback` function. It allows you to set the context
* (value of `this`) for the callback function. This can be useful when you want to access properties
* or
* @returns A new Red-Black Tree is being returned, where each entry has been transformed using the
* provided callback function.
*/
map(callback, options, thisArg) {
const newTree = new RedBlackTree([], options);
let index = 0;
for (const [key, value] of this) {
newTree.add(callback.call(thisArg, key, value, index++, this));
}
return newTree;
}
/**
* Time Complexity: O(n)
* Space Complexity: O(n)
*
* The function `clone` overrides the default cloning behavior to create a deep copy of a tree
* structure.
* @returns The `cloned` object is being returned.
*/
clone() {
const cloned = this.createTree();
this._clone(cloned);
return cloned;
}
/**
* Time Complexity: O(1)
* Space Complexity: O(1)
*
* The function sets the root of a tree-like structure and updates the parent property of the new
* root.
* @param {RedBlackTreeNode<K, V> | undefined} v - v is a parameter of type RedBlackTreeNode<K, V> or undefined.
*/
_setRoot(v) {
if (v) {
v.parent = undefined;
}
this._root = v;
}
/**
* Time Complexity: O(1)
* Space Complexity: O(1)
*
* The function replaces an old node with a new node while preserving the color of the old node.
* @param {RedBlackTreeNode<K, V>} oldNode - The `oldNode` parameter represents the node that needs to be replaced in
* the data structure.
* @param {RedBlackTreeNode<K, V>} newNode - The `newNode` parameter is of type `RedBlackTreeNode<K, V>`, which represents a node in a
* data structure.
* @returns The method is returning the result of calling the `_replaceNode` method from the
* superclass, with the `oldNode` and `newNode` parameters.
*/
_replaceNode(oldNode, newNode) {
newNode.color = oldNode.color;
return super._replaceNode(oldNode, newNode);
}
/**
* Time Complexity: O(log n)
* Space Complexity: O(log n)
*
* The `_insert` function inserts a node into a binary search tree and performs necessary fix-ups to
* maintain the red-black tree properties.
* @param {RedBlackTreeNode<K, V>} node - The `node` parameter represents the node that needs to be inserted into the
* binary search tree.
* @returns a string value indicating the result of the insertion operation. It can return either
* 'UPDATED' if the node with the same key already exists and was updated, or 'CREATED' if a new node
* was created and inserted into the tree.
*/
_insert(node) {
var _a, _b;
let current = this.root;
let parent = undefined;
while (this.isRealNode(current)) {
parent = current;
const compared = this._compare(node.key, current.key);
if (compared < 0) {
current = (_a = current.left) !== null && _a !== void 0 ? _a : this.NIL;
}
else if (compared > 0) {
current = (_b = current.right) !== null && _b !== void 0 ? _b : this.NIL;
}
else {
this._replaceNode(current, node);
return 'UPDATED';
}
}
node.parent = parent;
if (!parent) {
this._setRoot(node);
}
else if (this._compare(node.key, parent.key) < 0) {
parent.left = node;
}
else {
parent.right = node;
}
node.left = this.NIL;
node.right = this.NIL;
node.color = 'RED';
this._insertFixup(node);
return 'CREATED';
}
/**
* Time Complexity: O(1)
* Space Complexity: O(1)
*
* The function `_transplant` is used to replace a node `u` with another node `v` in a binary tree.
* @param {RedBlackTreeNode<K, V>} u - The parameter "u" represents a node in a binary tree.
* @param {RedBlackTreeNode<K, V> | undefined} v - The parameter `v` is of type `RedBlackTreeNode<K, V> | undefined`, which means it can
* either be a `RedBlackTreeNode<K, V>` object or `undefined`.
*/
_transplant(u, v) {
if (!u.parent) {
this._setRoot(v);
}
else if (u === u.parent.left) {
u.parent.left = v;
}
else {
u.parent.right = v;
}
if (v) {
v.parent = u.parent;
}
}
/**
* Time Complexity: O(log n)
* Space Complexity: O(1)
*
* The `_insertFixup` function is used to fix the Red-Black Tree after inserting a new node.
* @param {RedBlackTreeNode<K, V> | undefined} z - The parameter `z` represents a node in the Red-Black Tree data
* structure. It can either be a valid node or `undefined`.
*/
_insertFixup(z) {
var _a, _b, _c, _d, _e;
// Continue fixing the tree as long as the parent of z is red
while (((_a = z === null || z === void 0 ? void 0 : z.parent) === null || _a === void 0 ? void 0 : _a.color) === 'RED') {
// Check if the parent of z is the left child of its parent
if (z.parent === ((_b = z.parent.parent) === null || _b === void 0 ? void 0 : _b.left)) {
// Case 1: The uncle (y) of z is red
const y = z.parent.parent.right;
if ((y === null || y === void 0 ? void 0 : y.color) === 'RED') {
// Set colors to restore properties of Red-Black Tree
z.parent.color = 'BLACK';
y.color = 'BLACK';
z.parent.parent.color = 'RED';
// Move up the tree to continue fixing
z = z.parent.parent;
}
else {
// Case 2: The uncle (y) of z is black, and z is a right child
if (z === z.parent.right) {
// Perform a left rotation to transform the case into Case 3
z = z.parent;
this._leftRotate(z);
}
// Case 3: The uncle (y) of z is black, and z is a left child
// Adjust colors and perform a right rotation
if (z && this.isRealNode(z.parent) && this.isRealNode(z.parent.parent)) {
z.parent.color = 'BLACK';
z.parent.parent.color = 'RED';
this._rightRotate(z.parent.parent);
}
}
}
else {
// Symmetric case for the right child (left and right exchanged)
// Follow the same logic as above with left and right exchanged
const y = (_e = (_d = (_c = z === null || z === void 0 ? void 0 : z.parent) === null || _c === void 0 ? void 0 : _c.parent) === null || _d === void 0 ? void 0 : _d.left) !== null && _e !== void 0 ? _e : undefined;
if ((y === null || y === void 0 ? void 0 : y.color) === 'RED') {
z.parent.color = 'BLACK';
y.color = 'BLACK';
z.parent.parent.color = 'RED';
z = z.parent.parent;
}
else {
if (z === z.parent.left) {
z = z.parent;
this._rightRotate(z);
}
if (z && this.isRealNode(z.parent) && this.isRealNode(z.parent.parent)) {
z.parent.color = 'BLACK';
z.parent.parent.color = 'RED';
this._leftRotate(z.parent.parent);
}
}
}
}
// Ensure that the root is black after fixing
if (this.isRealNode(this._root))
this._root.color = 'BLACK';
}
/**
* Time Complexity: O(log n)
* Space Complexity: O(1)
*
* The `_deleteFixup` function is used to fix the red-black tree after a node deletion by adjusting
* the colors and performing rotations.
* @param {RedBlackTreeNode<K, V> | undefined} node - The `node` parameter represents a node in a binary tree. It can
* be either a valid node object or `undefined`.
* @returns The function does not return any value. It has a return type of `void`, which means it
* does not return anything.
*/
_deleteFixup(node) {
var _a, _b, _c, _d;
// Early exit condition
if (!node || node === this.root || node.color === 'BLACK') {
if (node) {
node.color = 'BLACK'; // Ensure the final node is black
}
return;
}
while (node && node !== this.root && node.color === 'BLACK') {
const parent = node.parent;
if (!parent) {
break; // Ensure the loop terminates if there's an issue with the tree structure
}
if (node === parent.left) {
let sibling = parent.right;
// Cases 1 and 2: Sibling is red or both children of sibling are black
if ((sibling === null || sibling === void 0 ? void 0 : sibling.color) === 'RED') {
sibling.color = 'BLACK';
parent.color = 'RED';
this._leftRotate(parent);
sibling = parent.right;
}
// Case 3: Sibling's left child is black
if (((_b = (_a = sibling === null || sibling === void 0 ? void 0 : sibling.left) === null || _a === void 0 ? void 0 : _a.color) !== null && _b !== void 0 ? _b : 'BLACK') === 'BLACK') {
if (sibling)
sibling.color = 'RED';
node = parent;
}
else {
// Case 4: Adjust colors and perform a right rotation
if (sibling === null || sibling === void 0 ? void 0 : sibling.left)
sibling.left.color = 'BLACK';
if (sibling)
sibling.color = parent.color;
parent.color = 'BLACK';
this._rightRotate(parent);
node = this.root;
}
}
else {
// Symmetric case for the right child (left and right exchanged)
let sibling = parent.left;
// Cases 1 and 2: Sibling is red or both children of sibling are black
if ((sibling === null || sibling === void 0 ? void 0 : sibling.color) === 'RED') {
sibling.color = 'BLACK';
if (parent)
parent.color = 'RED';
this._rightRotate(parent);
if (parent)
sibling = parent.left;
}
// Case 3: Sibling's left child is black
if (((_d = (_c = sibling === null || sibling === void 0 ? void 0 : sibling.right) === null || _c === void 0 ? void 0 : _c.color) !== null && _d !== void 0 ? _d : 'BLACK') === 'BLACK') {
if (sibling)
sibling.color = 'RED';
node = parent;
}
else {
// Case 4: Adjust colors and perform a left rotation
if (sibling === null || sibling === void 0 ? void 0 : sibling.right)
sibling.right.color = 'BLACK';
if (sibling)
sibling.color = parent.color;
if (parent)
parent.color = 'BLACK';
this._leftRotate(parent);
node = this.root;
}
}
}
// Ensure that the final node (possibly the root) is black
if (node) {
node.color = 'BLACK';
}
}
/**
* Time Complexity: O(1)
* Space Complexity: O(1)
*
* The `_leftRotate` function performs a left rotation on a given node in a binary tree.
* @param {RedBlackTreeNode<K, V> | undefined} x - The parameter `x` is of type `RedBlackTreeNode<K, V> | undefined`. It represents a
* node in a binary tree or `undefined` if there is no node.
* @returns void, which means it does not return any value.
*/
_leftRotate(x) {
if (!x || !x.right) {
return;
}
const y = x.right;
x.right = y.left;
if (this.isRealNode(y.left)) {
y.left.parent = x;
}
y.parent = x.parent;
if (!x.parent) {
this._setRoot(y);
}
else if (x === x.parent.left) {
x.parent.left = y;
}
else {
x.parent.right = y;
}
y.left = x;
x.parent = y;
}
/**
* Time Complexity: O(1)
* Space Complexity: O(1)
*
* The `_rightRotate` function performs a right rotation on a given node in a binary tree.
* @param {RedBlackTreeNode<K, V> | undefined} y - The parameter `y` is of type `RedBlackTreeNode<K, V> | undefined`. It represents a
* node in a binary tree or `undefined` if there is no node.
* @returns void, which means it does not return any value.
*/
_rightRotate(y) {
if (!y || !y.left) {
return;
}
const x = y.left;
y.left = x.right;
if (this.isRealNode(x.right)) {
x.right.parent = y;
}
x.parent = y.parent;
if (!y.parent) {
this._setRoot(x);
}
else if (y === y.parent.left) {
y.parent.left = x;
}
else {
y.parent.right = x;
}
x.right = y;
y.parent = x;
}
}
exports.RedBlackTree = RedBlackTree;