UNPKG

doubly-linked-list-typed

Version:
728 lines 62.9 kB
/** * data-structure-typed * * @author Pablo Zeng * @copyright Copyright (c) 2022 Pablo Zeng <zrwusa@gmail.com> * @license MIT License */ import type { BinaryTreeDeleteResult, BinaryTreeOptions, BinaryTreePrintOptions, BTNEntry, DFSOrderPattern, EntryCallback, FamilyPosition, IterationType, NodeCallback, NodeDisplayLayout, NodePredicate, OptNodeOrNull, RBTNColor, ToEntryFn } from '../../types'; import { IBinaryTree } from '../../interfaces'; import { IterableEntryBase } from '../base'; import { Range } from '../../common'; /** * Represents a node in a binary tree. * @template V - The type of data stored in the node. * @template BinaryTreeNode<K, V> - The type of the family relationship in the binary tree. */ export declare class BinaryTreeNode<K = any, V = any> { key: K; value?: V; parent?: BinaryTreeNode<K, V>; /** * The constructor function initializes an object with a key and an optional value in TypeScript. * @param {K} key - The `key` parameter in the constructor function is used to store the key value * for the key-value pair. * @param {V} [value] - The `value` parameter in the constructor is optional, meaning it does not * have to be provided when creating an instance of the class. If a `value` is not provided, it will * default to `undefined`. */ constructor(key: K, value?: V); _left?: BinaryTreeNode<K, V> | null | undefined; get left(): BinaryTreeNode<K, V> | null | undefined; set left(v: BinaryTreeNode<K, V> | null | undefined); _right?: BinaryTreeNode<K, V> | null | undefined; get right(): BinaryTreeNode<K, V> | null | undefined; set right(v: BinaryTreeNode<K, V> | null | undefined); _height: number; get height(): number; set height(value: number); _color: RBTNColor; get color(): RBTNColor; set color(value: RBTNColor); _count: number; get count(): number; set count(value: number); get familyPosition(): FamilyPosition; } /** * 1. Two Children Maximum: Each node has at most two children. * 2. Left and Right Children: Nodes have distinct left and right children. * 3. Depth and Height: Depth is the number of edges from the root to a node; height is the maximum depth in the tree. * 4. Subtrees: Each child of a node forms the root of a subtree. * 5. Leaf Nodes: Nodes without children are leaves. * @example * // determine loan approval using a decision tree * // Decision tree structure * const loanDecisionTree = new BinaryTree<string>( * ['stableIncome', 'goodCredit', 'Rejected', 'Approved', 'Rejected'], * { isDuplicate: true } * ); * * function determineLoanApproval( * node?: BinaryTreeNode<string> | null, * conditions?: { [key: string]: boolean } * ): string { * if (!node) throw new Error('Invalid node'); * * // If it's a leaf node, return the decision result * if (!node.left && !node.right) return node.key; * * // Check if a valid condition exists for the current node's key * return conditions?.[node.key] * ? determineLoanApproval(node.left, conditions) * : determineLoanApproval(node.right, conditions); * } * * // Test case 1: Stable income and good credit score * console.log(determineLoanApproval(loanDecisionTree.root, { stableIncome: true, goodCredit: true })); // 'Approved' * * // Test case 2: Stable income but poor credit score * console.log(determineLoanApproval(loanDecisionTree.root, { stableIncome: true, goodCredit: false })); // 'Rejected' * * // Test case 3: No stable income * console.log(determineLoanApproval(loanDecisionTree.root, { stableIncome: false, goodCredit: true })); // 'Rejected' * * // Test case 4: No stable income and poor credit score * console.log(determineLoanApproval(loanDecisionTree.root, { stableIncome: false, goodCredit: false })); // 'Rejected' * @example * // evaluate the arithmetic expression represented by the binary tree * const expressionTree = new BinaryTree<number | string>(['+', 3, '*', null, null, 5, '-', null, null, 2, 8]); * * function evaluate(node?: BinaryTreeNode<number | string> | null): number { * if (!node) return 0; * * if (typeof node.key === 'number') return node.key; * * const leftValue = evaluate(node.left); // Evaluate the left subtree * const rightValue = evaluate(node.right); // Evaluate the right subtree * * // Perform the operation based on the current node's operator * switch (node.key) { * case '+': * return leftValue + rightValue; * case '-': * return leftValue - rightValue; * case '*': * return leftValue * rightValue; * case '/': * return rightValue !== 0 ? leftValue / rightValue : 0; // Handle division by zero * default: * throw new Error(`Unsupported operator: ${node.key}`); * } * } * * console.log(evaluate(expressionTree.root)); // -27 */ export declare class BinaryTree<K = any, V = any, R = object, MK = any, MV = any, MR = object> extends IterableEntryBase<K, V | undefined> implements IBinaryTree<K, V, R, MK, MV, MR> { iterationType: IterationType; /** * This TypeScript constructor function initializes a binary tree with optional options and adds * elements based on the provided input. * @param keysNodesEntriesOrRaws - The `keysNodesEntriesOrRaws` parameter in the constructor is an * iterable that can contain either objects of type `K | BinaryTreeNode<K, V> | [K | null | undefined, V | undefined] | null | undefined ` or `R`. It * is used to initialize the binary tree with keys, nodes, entries, or raw data. * @param [options] - The `options` parameter in the constructor is an optional object that can * contain the following properties: */ constructor(keysNodesEntriesOrRaws?: Iterable<K | BinaryTreeNode<K, V> | [K | null | undefined, V | undefined] | null | undefined | R>, options?: BinaryTreeOptions<K, V, R>); protected _isMapMode: boolean; get isMapMode(): boolean; protected _isDuplicate: boolean; get isDuplicate(): boolean; protected _store: Map<K, V | undefined>; get store(): Map<K, V | undefined>; protected _root?: BinaryTreeNode<K, V> | null | undefined; get root(): BinaryTreeNode<K, V> | null | undefined; protected _size: number; get size(): number; protected _NIL: BinaryTreeNode<K, V>; get NIL(): BinaryTreeNode<K, V>; protected _toEntryFn?: ToEntryFn<K, V, R>; get toEntryFn(): ToEntryFn<K, V, R> | undefined; /** * Time Complexity: O(1) * Space Complexity: O(1) * * The function creates a new binary tree node with a specified key and optional value. * @param {K} key - The `key` parameter is the key of the node being created in the binary tree. * @param {V} [value] - The `value` parameter in the `createNode` function is optional, meaning it is * not required to be provided when calling the function. If a `value` is provided, it should be of * type `V`, which is the type of the value associated with the node. * @returns A new BinaryTreeNode instance with the provided key and value is being returned, casted * as BinaryTreeNode<K, V>. */ createNode(key: K, value?: V): BinaryTreeNode<K, V>; /** * Time Complexity: O(1) * Space Complexity: O(1) * * The function creates a binary tree with the specified options. * @param [options] - The `options` parameter in the `createTree` function is an optional parameter * that allows you to provide partial configuration options for creating a binary tree. It is of type * `Partial<BinaryTreeOptions<K, V, R>>`, which means you can pass in an object containing a subset * of properties * @returns A new instance of a binary tree with the specified options is being returned. */ createTree(options?: BinaryTreeOptions<K, V, R>): BinaryTree<K, V, R, MK, MV, MR>; /** * Time Complexity: O(n) * Space Complexity: O(log n) * * The function `ensureNode` in TypeScript checks if a given input is a node, entry, key, or raw * value and returns the corresponding node or null. * @param {K | BinaryTreeNode<K, V> | [K | null | undefined, V | undefined] | null | undefined } keyNodeOrEntry - The `keyNodeOrEntry` * parameter in the `ensureNode` function can be of type `K | BinaryTreeNode<K, V> | [K | null | undefined, V | undefined] | null | undefined ` or `R`. It * is used to determine whether the input is a key, node, entry, or raw data. The * @param {IterationType} iterationType - The `iterationType` parameter in the `ensureNode` function * is used to specify the type of iteration to be performed. It has a default value of * `this.iterationType` if not explicitly provided. * @returns The `ensureNode` function returns either a node, `null`, or `undefined` based on the * conditions specified in the code snippet. */ ensureNode(keyNodeOrEntry: K | BinaryTreeNode<K, V> | [K | null | undefined, V | undefined] | null | undefined, iterationType?: IterationType): BinaryTreeNode<K, V> | null | undefined; /** * Time Complexity: O(1) * Space Complexity: O(1) * * The function isNode checks if the input is an instance of BinaryTreeNode. * @param {K | BinaryTreeNode<K, V> | [K | null | undefined, V | undefined] | null | undefined } keyNodeOrEntry - The parameter * `keyNodeOrEntry` can be either a key, a node, an entry, or raw data. The function is * checking if the input is an instance of a `BinaryTreeNode` and returning a boolean value * accordingly. * @returns The function `isNode` is checking if the input `keyNodeOrEntry` is an instance of * `BinaryTreeNode`. If it is, the function returns `true`, indicating that the input is a node. If * it is not an instance of `BinaryTreeNode`, the function returns `false`, indicating that the input * is not a node. */ isNode(keyNodeOrEntry: K | BinaryTreeNode<K, V> | [K | null | undefined, V | undefined] | null | undefined): keyNodeOrEntry is BinaryTreeNode<K, V>; /** * Time Complexity: O(1) * Space Complexity: O(1) * * The function `isRaw` checks if the input parameter is of type `R` by verifying if it is an object. * @param {K | BinaryTreeNode<K, V> | [K | null | undefined, V | undefined] | null | undefined | R} keyNodeEntryOrRaw - K | BinaryTreeNode<K, V> | [K | null | undefined, V | undefined] | null | undefined * @returns The function `isRaw` is checking if the `keyNodeEntryOrRaw` parameter is of type `R` by * checking if it is an object. If the parameter is an object, the function will return `true`, * indicating that it is of type `R`. */ isRaw(keyNodeEntryOrRaw: K | BinaryTreeNode<K, V> | [K | null | undefined, V | undefined] | null | undefined | R): keyNodeEntryOrRaw is R; /** * Time Complexity: O(1) * Space Complexity: O(1) * * The function `isRealNode` checks if a given input is a valid node in a binary tree. * @param {K | BinaryTreeNode<K, V> | [K | null | undefined, V | undefined] | null | undefined } keyNodeOrEntry - The `keyNodeOrEntry` * parameter in the `isRealNode` function can be of type `K | BinaryTreeNode<K, V> | [K | null | undefined, V | undefined] | null | undefined ` or `R`. * The function checks if the input parameter is a `BinaryTreeNode<K, V>` type by verifying if it is not equal * @returns The function `isRealNode` is checking if the input `keyNodeOrEntry` is a valid * node by comparing it to `this._NIL`, `null`, and `undefined`. If the input is not one of these * values, it then calls the `isNode` method to further determine if the input is a node. The * function will return a boolean value indicating whether the */ isRealNode(keyNodeOrEntry: K | BinaryTreeNode<K, V> | [K | null | undefined, V | undefined] | null | undefined): keyNodeOrEntry is BinaryTreeNode<K, V>; /** * Time Complexity: O(1) * Space Complexity: O(1) * * The function checks if a given input is a valid node or null. * @param {K | BinaryTreeNode<K, V> | [K | null | undefined, V | undefined] | null | undefined } keyNodeOrEntry - The parameter * `keyNodeOrEntry` in the `isRealNodeOrNull` function can be of type `BTNRep<K, * V, BinaryTreeNode<K, V>>` or `R`. It is a union type that can either be a key, a node, an entry, or * @returns The function `isRealNodeOrNull` is returning a boolean value. It checks if the input * `keyNodeOrEntry` is either `null` or a real node, and returns `true` if it is a node or * `null`, and `false` otherwise. */ isRealNodeOrNull(keyNodeOrEntry: K | BinaryTreeNode<K, V> | [K | null | undefined, V | undefined] | null | undefined): keyNodeOrEntry is BinaryTreeNode<K, V> | null; /** * Time Complexity: O(1) * Space Complexity: O(1) * * The function isNIL checks if a given key, node, entry, or raw value is equal to the _NIL value. * @param {K | BinaryTreeNode<K, V> | [K | null | undefined, V | undefined] | null | undefined } keyNodeOrEntry - BTNRep<K, V, * BinaryTreeNode<K, V>> * @returns The function is checking if the `keyNodeOrEntry` parameter is equal to the `_NIL` * property of the current object and returning a boolean value based on that comparison. */ isNIL(keyNodeOrEntry: K | BinaryTreeNode<K, V> | [K | null | undefined, V | undefined] | null | undefined): boolean; /** * Time Complexity: O(1) * Space Complexity: O(1) * * The function `isRange` checks if the input parameter is an instance of the `Range` class. * @param {K | BinaryTreeNode<K, V> | [K | null | undefined, V | undefined] | null | undefined | NodePredicate<BinaryTreeNode<K, V>> | Range<K>} keyNodeEntryOrPredicate * - The `keyNodeEntryOrPredicate` parameter in the `isRange` function can be * of type `K | BinaryTreeNode<K, V> | [K | null | undefined, V | undefined] | null | undefined `, `NodePredicate<BinaryTreeNode<K, V>>`, or * `Range<K>`. The function checks if the `keyNodeEntry * @returns The `isRange` function is checking if the `keyNodeEntryOrPredicate` parameter is an * instance of the `Range` class. If it is an instance of `Range`, the function will return `true`, * indicating that the parameter is a `Range<K>`. If it is not an instance of `Range`, the function * will return `false`. */ isRange(keyNodeEntryOrPredicate: K | BinaryTreeNode<K, V> | [K | null | undefined, V | undefined] | null | undefined | NodePredicate<BinaryTreeNode<K, V>> | Range<K>): keyNodeEntryOrPredicate is Range<K>; /** * Time Complexity: O(1) * Space Complexity: O(1) * * The function determines whether a given key, node, entry, or raw data is a leaf node in a binary * tree. * @param {K | BinaryTreeNode<K, V> | [K | null | undefined, V | undefined] | null | undefined } keyNodeOrEntry - The parameter * `keyNodeOrEntry` can be of type `K | BinaryTreeNode<K, V> | [K | null | undefined, V | undefined] | null | undefined ` or `R`. It represents a * key, node, entry, or raw data in a binary tree structure. The function `isLeaf` checks whether the * provided * @returns The function `isLeaf` returns a boolean value indicating whether the input * `keyNodeOrEntry` is a leaf node in a binary tree. */ isLeaf(keyNodeOrEntry: K | BinaryTreeNode<K, V> | [K | null | undefined, V | undefined] | null | undefined): boolean; /** * Time Complexity: O(1) * Space Complexity: O(1) * * The function `isEntry` checks if the input is a BTNEntry object by verifying if it is an array * with a length of 2. * @param {K | BinaryTreeNode<K, V> | [K | null | undefined, V | undefined] | null | undefined } keyNodeOrEntry - The `keyNodeOrEntry` * parameter in the `isEntry` function can be of type `K | BinaryTreeNode<K, V> | [K | null | undefined, V | undefined] | null | undefined ` or type `R`. * The function checks if the provided `keyNodeOrEntry` is of type `BTN * @returns The `isEntry` function is checking if the `keyNodeOrEntry` parameter is an array * with a length of 2. If it is, then it returns `true`, indicating that the parameter is of type * `BTNEntry<K, V>`. If the condition is not met, it returns `false`. */ isEntry(keyNodeOrEntry: K | BinaryTreeNode<K, V> | [K | null | undefined, V | undefined] | null | undefined): keyNodeOrEntry is BTNEntry<K, V>; /** * Time Complexity O(1) * Space Complexity O(1) * * The function `isValidKey` checks if a given key is comparable. * @param {any} key - The `key` parameter is of type `any`, which means it can be any data type in * TypeScript. * @returns The function `isValidKey` is checking if the `key` parameter is `null` or if it is comparable. * If the `key` is `null`, the function returns `true`. Otherwise, it returns the result of the * `isComparable` function, which is not provided in the code snippet. */ isValidKey(key: any): key is K; /** * Time Complexity O(n) * Space Complexity O(1) * * The `add` function in TypeScript adds a new node to a binary tree while handling duplicate keys * and finding the correct insertion position. * @param {K | BinaryTreeNode<K, V> | [K | null | undefined, V | undefined] | null | undefined } keyNodeOrEntry - The `add` method you provided * seems to be for adding a new node to a binary tree structure. The `keyNodeOrEntry` * parameter in the method can accept different types of values: * @param {V} [value] - The `value` parameter in the `add` method represents the value associated * with the key that you want to add to the binary tree. When adding a key-value pair to the binary * tree, you provide the key and its corresponding value. The `add` method then creates a new node * with this * @returns The `add` method returns a boolean value. It returns `true` if the insertion of the new * node was successful, and `false` if the insertion position could not be found or if a duplicate * key was found and the node was replaced instead of inserted. */ add(keyNodeOrEntry: K | BinaryTreeNode<K, V> | [K | null | undefined, V | undefined] | null | undefined, value?: V): boolean; /** * Time Complexity: O(k * n) * Space Complexity: O(k) * * The `addMany` function takes in multiple keys or nodes or entries or raw values along with * optional values, and adds them to a data structure while returning an array indicating whether * each insertion was successful. * @param keysNodesEntriesOrRaws - `keysNodesEntriesOrRaws` is an iterable that can contain a * mix of keys, nodes, entries, or raw values. Each element in this iterable can be of type * `K | BinaryTreeNode<K, V> | [K | null | undefined, V | undefined] | null | undefined ` or `R`. * @param [values] - The `values` parameter in the `addMany` function is an optional parameter that * accepts an iterable of values. These values correspond to the keys or nodes being added in the * `keysNodesEntriesOrRaws` parameter. If provided, the function will iterate over the values and * assign them * @returns The `addMany` method returns an array of boolean values indicating whether each key, * node, entry, or raw value was successfully added to the data structure. Each boolean value * corresponds to the success of adding the corresponding key or value in the input iterable. */ addMany(keysNodesEntriesOrRaws: Iterable<K | BinaryTreeNode<K, V> | [K | null | undefined, V | undefined] | null | undefined | R>, values?: Iterable<V | undefined>): boolean[]; /** * Time Complexity: O(k * n) * Space Complexity: O(1) * * The `merge` function in TypeScript merges another binary tree into the current tree by adding all * elements from the other tree. * @param anotherTree - BinaryTree<K, V, R, MK, MV, MR> */ merge(anotherTree: BinaryTree<K, V, R, MK, MV, MR>): void; /** * Time Complexity: O(k * n) * Space Complexity: O(1) * * The `refill` function clears the existing data structure and then adds new key-value pairs based * on the provided input. * @param keysNodesEntriesOrRaws - The `keysNodesEntriesOrRaws` parameter in the `refill` * method can accept an iterable containing a mix of `K | BinaryTreeNode<K, V> | [K | null | undefined, V | undefined] | null | undefined ` objects or `R` * objects. * @param [values] - The `values` parameter in the `refill` method is an optional parameter that * accepts an iterable of values of type `V` or `undefined`. */ refill(keysNodesEntriesOrRaws: Iterable<K | BinaryTreeNode<K, V> | [K | null | undefined, V | undefined] | null | undefined | R>, values?: Iterable<V | undefined>): void; /** * Time Complexity: O(n) * Space Complexity: O(1) * * The function `delete` in TypeScript implements the deletion of a node in a binary tree and returns * the deleted node along with information for tree balancing. * @param {K | BinaryTreeNode<K, V> | [K | null | undefined, V | undefined] | null | undefined } keyNodeOrEntry * - The `delete` method you provided is used to delete a node from a binary tree based on the key, * node, entry or raw data. The method returns an array of * `BinaryTreeDeleteResult` objects containing information about the deleted node and whether * balancing is needed. * @returns The `delete` method returns an array of `BinaryTreeDeleteResult` objects. Each object in * the array contains information about the node that was deleted (`deleted`) and the node that may * need to be balanced (`needBalanced`). */ delete(keyNodeOrEntry: K | BinaryTreeNode<K, V> | [K | null | undefined, V | undefined] | null | undefined): BinaryTreeDeleteResult<BinaryTreeNode<K, V>>[]; /** * Time Complexity: O(n) * Space Complexity: O(k + log n) * * The `search` function in TypeScript performs a depth-first or breadth-first search on a tree * structure based on a given predicate or key, with options to return multiple results or just one. * @param {K | BinaryTreeNode<K, V> | [K | null | undefined, V | undefined] | null | undefined | NodePredicate<BinaryTreeNode<K, V>>} keyNodeEntryOrPredicate - The * `keyNodeEntryOrPredicate` parameter in the `search` function can accept three types of values: * @param [onlyOne=false] - The `onlyOne` parameter in the `search` function is a boolean flag that * determines whether the search should stop after finding the first matching node. If `onlyOne` is * set to `true`, the search will return as soon as a matching node is found. If `onlyOne` is * @param {C} callback - The `callback` parameter in the `search` function is a callback function * that will be called on each node that matches the search criteria. It is of type `C`, which * extends `NodeCallback<BinaryTreeNode<K, V> | null>`. The default value for `callback` is `this._DEFAULT_NODE_CALLBACK` if * @param {K | BinaryTreeNode<K, V> | [K | null | undefined, V | undefined] | null | undefined } startNode - The `startNode` parameter in the `search` function is * used to specify the node from which the search operation should begin. It represents the starting * point in the binary tree where the search will be performed. If no specific `startNode` is * provided, the search operation will start from the root * @param {IterationType} iterationType - The `iterationType` parameter in the `search` function * specifies the type of iteration to be used when searching for nodes in a binary tree. It can have * two possible values: * @returns The `search` function returns an array of values that match the provided criteria based * on the search algorithm implemented within the function. */ search<C extends NodeCallback<BinaryTreeNode<K, V> | null>>(keyNodeEntryOrPredicate: K | BinaryTreeNode<K, V> | [K | null | undefined, V | undefined] | null | undefined | NodePredicate<BinaryTreeNode<K, V> | null>, onlyOne?: boolean, callback?: C, startNode?: K | BinaryTreeNode<K, V> | [K | null | undefined, V | undefined] | null | undefined, iterationType?: IterationType): ReturnType<C>[]; getNodes(keyNodeEntryOrPredicate: K | BinaryTreeNode<K, V> | [K | null | undefined, V | undefined] | null | undefined | NodePredicate<BinaryTreeNode<K, V>>, onlyOne?: boolean, startNode?: K | BinaryTreeNode<K, V> | [K | null | undefined, V | undefined] | null | undefined, iterationType?: IterationType): BinaryTreeNode<K, V>[]; /** * Time Complexity: O(n) * Space Complexity: O(log n) * * The `getNode` function retrieves a node based on the provided key, node, entry, raw data, or * predicate. * @param {K | BinaryTreeNode<K, V> | [K | null | undefined, V | undefined] | null | undefined | NodePredicate<BinaryTreeNode<K, V>>} keyNodeEntryOrPredicate * - The `keyNodeEntryOrPredicate` parameter in the `getNode` function can accept a key, * node, entry, raw data, or a predicate function. * @param {K | BinaryTreeNode<K, V> | [K | null | undefined, V | undefined] | null | undefined } startNode - The `startNode` parameter in the * `getNode` function is used to specify the starting point for searching for a node in a binary * tree. If no specific starting point is provided, the default value is set to `this._root`, which * is typically the root node of the binary tree. * @param {IterationType} iterationType - The `iterationType` parameter in the `getNode` method is * used to specify the type of iteration to be performed when searching for a node. It has a default * value of `this.iterationType`, which means it will use the iteration type defined in the current * context if no specific value is provided * @returns The `getNode` function is returning the first node that matches the specified criteria, * or `null` if no matching node is found. */ getNode(keyNodeEntryOrPredicate: K | BinaryTreeNode<K, V> | [K | null | undefined, V | undefined] | null | undefined | NodePredicate<BinaryTreeNode<K, V> | null>, startNode?: K | BinaryTreeNode<K, V> | [K | null | undefined, V | undefined] | null | undefined, iterationType?: IterationType): BinaryTreeNode<K, V> | null | undefined; /** * Time Complexity: O(n) * Space Complexity: O(log n) * * This function overrides the `get` method to retrieve the value associated with a specified key, * node, entry, raw data, or predicate in a data structure. * @param {K | BinaryTreeNode<K, V> | [K | null | undefined, V | undefined] | null | undefined | NodePredicate<BinaryTreeNode<K, V>>} keyNodeEntryOrPredicate * - The `keyNodeEntryOrPredicate` parameter in the `get` method can accept one of the * following types: * @param {K | BinaryTreeNode<K, V> | [K | null | undefined, V | undefined] | null | undefined } startNode - The `startNode` parameter in the `get` * method is used to specify the starting point for searching for a key or node in the binary tree. * If no specific starting point is provided, the default starting point is the root of the binary * tree (`this._root`). * @param {IterationType} iterationType - The `iterationType` parameter in the `get` method is used * to specify the type of iteration to be performed when searching for a key in the binary tree. It * is an optional parameter with a default value of `this.iterationType`, which means it will use the * iteration type defined in the * @returns The `get` method is returning the value associated with the specified key, node, entry, * raw data, or predicate in the binary tree map. If the specified key or node is found in the tree, * the method returns the corresponding value. If the key or node is not found, it returns * `undefined`. */ get(keyNodeEntryOrPredicate: K | BinaryTreeNode<K, V> | [K | null | undefined, V | undefined] | null | undefined, startNode?: K | BinaryTreeNode<K, V> | [K | null | undefined, V | undefined] | null | undefined, iterationType?: IterationType): V | undefined; has(keyNodeEntryOrPredicate?: K | BinaryTreeNode<K, V> | [K | null | undefined, V | undefined] | null | undefined | NodePredicate<BinaryTreeNode<K, V>>, startNode?: K | BinaryTreeNode<K, V> | [K | null | undefined, V | undefined] | null | undefined, iterationType?: IterationType): boolean; /** * Time Complexity: O(1) * Space Complexity: O(1) * * The clear function removes nodes and values in map mode. */ clear(): void; /** * Time Complexity: O(1) * Space Complexity: O(1) * * The `isEmpty` function in TypeScript checks if a data structure has no elements and returns a * boolean value. * @returns The `isEmpty()` method is returning a boolean value, specifically `true` if the `_size` * property is equal to 0, indicating that the data structure is empty, and `false` otherwise. */ isEmpty(): boolean; /** * Time Complexity: O(n) * Space Complexity: O(log n) * * The function checks if a binary tree is perfectly balanced by comparing its minimum height with * its height. * @param {K | BinaryTreeNode<K, V> | [K | null | undefined, V | undefined] | null | undefined } startNode - The `startNode` parameter is the starting * point for checking if the binary tree is perfectly balanced. It represents the root node of the * binary tree or a specific node from which the balance check should begin. * @returns The method `isPerfectlyBalanced` is returning a boolean value, which indicates whether * the tree starting from the `startNode` node is perfectly balanced or not. The return value is * determined by comparing the minimum height of the tree with the height of the tree. If the minimum * height plus 1 is greater than or equal to the height of the tree, then it is considered perfectly * balanced and */ isPerfectlyBalanced(startNode?: K | BinaryTreeNode<K, V> | [K | null | undefined, V | undefined] | null | undefined): boolean; /** * Time Complexity: O(n) * Space Complexity: O(log n) * * The function `isBST` in TypeScript checks if a binary search tree is valid using either recursive * or iterative methods. * @param {K | BinaryTreeNode<K, V> | [K | null | undefined, V | undefined] | null | undefined } startNode - The `startNode` parameter in the `isBST` * function represents the starting point for checking whether a binary search tree (BST) is valid. * It can be a node in the BST or a reference to the root of the BST. If no specific node is * provided, the function will default to * @param {IterationType} iterationType - The `iterationType` parameter in the `isBST` function * determines whether the function should use a recursive approach or an iterative approach to check * if the binary search tree (BST) is valid. * @returns The `isBST` method is returning a boolean value, which indicates whether the binary * search tree (BST) represented by the given root node is a valid BST or not. The method checks if * the tree satisfies the BST property, where for every node, all nodes in its left subtree have keys * less than the node's key, and all nodes in its right subtree have keys greater than the node's */ isBST(startNode?: K | BinaryTreeNode<K, V> | [K | null | undefined, V | undefined] | null | undefined, iterationType?: IterationType): boolean; /** * Time Complexity: O(n) * Space Complexity: O(log n) * * The `getDepth` function calculates the depth between two nodes in a binary tree. * @param {K | BinaryTreeNode<K, V> | [K | null | undefined, V | undefined] | null | undefined } dist - The `dist` parameter in the `getDepth` * function represents the node or entry in a binary tree map, or a reference to a node in the tree. * It is the target node for which you want to calculate the depth from the `startNode` node. * @param {K | BinaryTreeNode<K, V> | [K | null | undefined, V | undefined] | null | undefined } startNode - The `startNode` parameter in the * `getDepth` function represents the starting point from which you want to calculate the depth of a * given node or entry in a binary tree. If no specific starting point is provided, the default value * for `startNode` is set to the root of the binary * @returns The `getDepth` method returns the depth of a given node `dist` relative to the * `startNode` node in a binary tree. If the `dist` node is not found in the path to the `startNode` * node, it returns the depth of the `dist` node from the root of the tree. */ getDepth(dist: K | BinaryTreeNode<K, V> | [K | null | undefined, V | undefined] | null | undefined, startNode?: K | BinaryTreeNode<K, V> | [K | null | undefined, V | undefined] | null | undefined): number; /** * Time Complexity: O(n) * Space Complexity: O(log n) * * The `getHeight` function calculates the maximum height of a binary tree using either a recursive * or iterative approach in TypeScript. * @param {K | BinaryTreeNode<K, V> | [K | null | undefined, V | undefined] | null | undefined } startNode - The `startNode` parameter is the starting * point from which the height of the binary tree will be calculated. It can be a node in the binary * tree or a reference to the root of the tree. If not provided, it defaults to the root of the * binary tree data structure. * @param {IterationType} iterationType - The `iterationType` parameter is used to determine the type * of iteration to be performed while calculating the height of the binary tree. It can have two * possible values: * @returns The `getHeight` method returns the height of the binary tree starting from the specified * root node. The height is calculated based on the maximum depth of the tree, considering either a * recursive approach or an iterative approach depending on the `iterationType` parameter. */ getHeight(startNode?: K | BinaryTreeNode<K, V> | [K | null | undefined, V | undefined] | null | undefined, iterationType?: IterationType): number; /** * Time Complexity: O(n) * Space Complexity: O(log n) * * The `getMinHeight` function calculates the minimum height of a binary tree using either a * recursive or iterative approach in TypeScript. * @param {K | BinaryTreeNode<K, V> | [K | null | undefined, V | undefined] | null | undefined } startNode - The `startNode` parameter in the * `getMinHeight` function represents the starting node from which the minimum height of the binary * tree will be calculated. It is either a node in the binary tree or a reference to the root of the * tree. If not provided, the default value is the root * @param {IterationType} iterationType - The `iterationType` parameter in the `getMinHeight` method * specifies the type of iteration to use when calculating the minimum height of a binary tree. It * can have two possible values: * @returns The `getMinHeight` method returns the minimum height of the binary tree starting from the * specified root node. The height is calculated based on the shortest path from the root node to a * leaf node in the tree. The method uses either a recursive approach or an iterative approach (using * a stack) based on the `iterationType` parameter. */ getMinHeight(startNode?: K | BinaryTreeNode<K, V> | [K | null | undefined, V | undefined] | null | undefined, iterationType?: IterationType): number; /** * Time Complexity: O(log n) * Space Complexity: O(log n) * * The function `getPathToRoot` in TypeScript retrieves the path from a given node to the root of a * tree structure, applying a specified callback function along the way. * @param {C} callback - The `callback` parameter is a function that is used to process each node in * the path to the root. It is expected to be a function that takes a node as an argument and returns * a value based on that node. The return type of the callback function is determined by the generic * type `C * @param {K | BinaryTreeNode<K, V> | [K | null | undefined, V | undefined] | null | undefined } beginNode - The `beginNode` parameter in the * `getPathToRoot` function can be either a key, a node, an entry, or any other value of type `R`. * @param [isReverse=true] - The `isReverse` parameter in the `getPathToRoot` function determines * whether the resulting path from the given `beginNode` to the root should be in reverse order or * not. If `isReverse` is set to `true`, the path will be reversed before being returned. If `is * @returns The function `getPathToRoot` returns an array of the return values of the callback * function `callback` applied to each node in the path from the `beginNode` to the root node. The * array is either in reverse order or in the original order based on the value of the `isReverse` * parameter. */ getPathToRoot<C extends NodeCallback<OptNodeOrNull<BinaryTreeNode<K, V>>>>(beginNode: K | BinaryTreeNode<K, V> | [K | null | undefined, V | undefined] | null | undefined, callback?: C, isReverse?: boolean): ReturnType<C>[]; /** * Time Complexity: O(log n) * Space Complexity: O(log n) * * The function `getLeftMost` retrieves the leftmost node in a binary tree using either recursive or * tail-recursive iteration. * @param {C} callback - The `callback` parameter is a function that will be called with the leftmost * node of a binary tree or with `undefined` if the tree is empty. It is provided with a default * value of `_DEFAULT_NODE_CALLBACK` if not specified. * @param {K | BinaryTreeNode<K, V> | [K | null | undefined, V | undefined] | null | undefined } startNode - The `startNode` parameter in the * `getLeftMost` function represents the starting point for finding the leftmost node in a binary * tree. It can be either a key, a node, or an entry in the binary tree structure. If no specific * starting point is provided, the function will default * @param {IterationType} iterationType - The `iterationType` parameter in the `getLeftMost` function * specifies the type of iteration to be used when traversing the binary tree nodes. It can have two * possible values: * @returns The `getLeftMost` function returns the result of the callback function `C` applied to the * leftmost node in the binary tree starting from the `startNode` node. If the `startNode` node is * `NIL`, it returns the result of the callback function applied to `undefined`. If the `startNode` * node is not a real node, it returns the result of the callback */ getLeftMost<C extends NodeCallback<OptNodeOrNull<BinaryTreeNode<K, V>>>>(callback?: C, startNode?: K | BinaryTreeNode<K, V> | [K | null | undefined, V | undefined] | null | undefined, iterationType?: IterationType): ReturnType<C>; /** * Time Complexity: O(log n) * Space Complexity: O(log n) * * The function `getRightMost` retrieves the rightmost node in a binary tree using either recursive * or iterative traversal methods. * @param {C} callback - The `callback` parameter is a function that will be called with the result * of finding the rightmost node in a binary tree. It is of type `NodeCallback<OptNodeOrNull<BinaryTreeNode<K, V>>>`, * which means it is a callback function that can accept either an optional binary tree node or null * as * @param {K | BinaryTreeNode<K, V> | [K | null | undefined, V | undefined] | null | undefined } startNode - The `startNode` parameter in the * `getRightMost` function represents the starting point for finding the rightmost node in a binary * tree. It can be either a key, a node, or an entry in the binary tree structure. If no specific * starting point is provided, the function will default * @param {IterationType} iterationType - The `iterationType` parameter in the `getRightMost` * function specifies the type of iteration to be used when traversing the binary tree nodes. It can * have two possible values: * @returns The `getRightMost` function returns the result of the callback function `C`, which is * passed as a parameter to the function. The callback function is called with the rightmost node in * the binary tree structure, determined based on the specified iteration type ('RECURSIVE' or * other). */ getRightMost<C extends NodeCallback<OptNodeOrNull<BinaryTreeNode<K, V>>>>(callback?: C, startNode?: K | BinaryTreeNode<K, V> | [K | null | undefined, V | undefined] | null | undefined, iterationType?: IterationType): ReturnType<C>; /** * Time Complexity: O(log n) * Space Complexity: O(log n) * * The function `getPredecessor` in TypeScript returns the predecessor node of a given node in a * binary tree. * @param {BinaryTreeNode<K, V>} node - The `getPredecessor` function you provided seems to be attempting to find the * predecessor of a given node in a binary tree. However, there seems to be a logical issue in the * while loop condition that might cause an infinite loop. * @returns The `getPredecessor` function returns the predecessor node of the input `BinaryTreeNode<K, V>` parameter. * If the left child of the input node exists, it traverses to the rightmost node of the left subtree * to find the predecessor. If the left child does not exist, it returns the input node itself. */ getPredecessor(node: BinaryTreeNode<K, V>): BinaryTreeNode<K, V>; /** * Time Complexity: O(log n) * Space Complexity: O(log n) * * The function `getSuccessor` in TypeScript returns the next node in an in-order traversal of a * binary tree. * @param {K | BinaryTreeNode<K, V> | null} [x] - The `getSuccessor` function takes a parameter `x`, which can be of * type `K`, `BinaryTreeNode<K, V>`, or `null`. * @returns The `getSuccessor` function returns the successor node of the input node `x`. If `x` has * a right child, the function returns the leftmost node in the right subtree of `x`. If `x` does not * have a right child, the function traverses up the parent nodes until it finds a node that is not * the right child of its parent, and returns that node */ getSuccessor(x?: K | BinaryTreeNode<K, V> | null): BinaryTreeNode<K, V> | null | undefined; dfs<C extends NodeCallback<BinaryTreeNode<K, V>>>(callback?: C, pattern?: DFSOrderPattern, onlyOne?: boolean, startNode?: K | BinaryTreeNode<K, V> | [K | null | undefined, V | undefined] | null | undefined, iterationType?: IterationType): ReturnType<C>[]; dfs<C extends NodeCallback<BinaryTreeNode<K, V> | null>>(callback?: C, pattern?: DFSOrderPattern, onlyOne?: boolean, startNode?: K | BinaryTreeNode<K, V> | [K | null | undefined, V | undefined] | null | undefined, iterationType?: IterationType, includeNull?: boolean): ReturnType<C>[]; bfs<C extends NodeCallback<BinaryTreeNode<K, V>>>(callback?: C, startNode?: K | BinaryTreeNode<K, V> | [K | null | undefined, V | undefined] | null | undefined, iterationType?: IterationType, includeNull?: false): ReturnType<C>[]; bfs<C extends NodeCallback<BinaryTreeNode<K, V> | null>>(callback?: C, startNode?: K | BinaryTreeNode<K, V> | [K | null | undefined, V | undefined] | null | undefined, iterationType?: IterationType, includeNull?: true): ReturnType<C>[]; /** * Time complexity: O(n) * Space complexity: O(n) * * The `leaves` function in TypeScript returns an array of values from leaf nodes in a binary tree * structure based on a specified callback and iteration type. * @param {C} callback - The `callback` parameter is a function that will be called on each leaf node * in the binary tree. It is optional and defaults to a default callback function if not provided. * @param {K | BinaryTreeNode<K, V> | [K | null | undefined, V | undefined] | null | undefined } startNode - The `startNode` parameter in the `leaves` * method is used to specify the starting point for finding and processing the leaves of a binary * tree. It can be provided as either a key, a node, or an entry in the binary tree structure. If not * explicitly provided, the default value * @param {IterationType} iterationType - The `iterationType` parameter in the `leaves` method * specifies the type of iteration to be performed when collecting the leaves of a binary tree. It * can have two possible values: * @returns The `leaves` method returns an array of values that are the result of applying the * provided callback function to each leaf node in the binary tree. */ leaves<C extends NodeCallback<BinaryTreeNode<K, V> | null>>(callback?: C, startNode?: K | BinaryTreeNode<K, V> | [K | null | undefined, V | undefined] | null | undefined, iterationType?: IterationType): ReturnType<C>[]; listLevels<C extends NodeCallback<BinaryTreeNode<K, V>>>(callback?: C, startNode?: K | BinaryTreeNode<K, V> | [K | null | undefined, V | undefined] | null | undefined, iterationType?: IterationType, includeNull?: false): ReturnType<C>[][]; listLevels<C extends NodeCallback<BinaryTreeNode<K, V> | null>>(callback?: C, startNode?: K | BinaryTreeNode<K, V> | [K | null | undefined, V | undefined] | null | undefined, iterationType?: IterationType, includeNull?: true): ReturnType<C>[][]; morris<C extends NodeCallback<BinaryTreeNode<K, V>>>(callback?: C, pattern?: DFSOrderPattern, startNode?: K | BinaryTreeNode<K, V> | [K | null | undefined, V | undefined] | null | undefined): ReturnType<C>[]; /** * Time complexity: O(n) * Space complexity: O(n) * * The `clone` function creates a deep copy of a tree structure by traversing it using breadth-first * search. * @returns The `clone()` method is returning a cloned copy of the tree with the same structure and * values as the original tree. The method creates a new tree, iterates over the nodes of the * original tree using breadth-first search (bfs), and adds the nodes to the new tree. If a node in * the original tree is null, a null node is added to the cloned tree. If a node */ clone(): BinaryTree<K, V, R, MK, MV, MR>; /** * Time Complexity: O(n) * Space Complexity: O(n) * * The `filter` function iterates over key-value pairs in a tree data structure and creates a new * tree with elements that satisfy a given predicate. * @param predicate - The `predicate` parameter in the `filter` method is a function that will be * called with four arguments: the `value` of the current entry, the `key` of the current entry, the * `index` of the current entry in the iteration, and the reference to the tree itself (` * @param {any} [thisArg] - The `thisArg` parameter in the `filter` method allows you to specify the * value of `this` that should be used when executing the `predicate` function. This is useful when * the `predicate` function relies on the context of a specific object or value. By providing a * `thisArg * @returns The `filter` method is returning a new tree that contains entries that pass the provided * predicate function. */ filter(predicate: EntryCallback<K, V | undefined, boolean>, thisArg?: any): BinaryTree<K, V, R, MK, MV, MR>; /** * Time Complexity: O(n) * Space Complexity: O(n) * * The `map` function in TypeScript creates a new BinaryTree by applying a callback function to each * entry in the original BinaryTree. * @param callback - A function that will be called for each entry in the current binary tree. It * takes the key, value (which can be undefined), and an array containing the mapped key and value as * arguments. * @param [options] - The `options` parameter in the `map` method is of type `BinaryTreeOptions<MK, * MV, MR>`. It is an optional parameter that allows you to specify additional options for the binary * tree being created during the mapping process. These options could include things like custom * comparators, initial * @param {any} [thisArg] - The `thisArg` parameter in the `map` method is used to specify the value * of `this` when executing the `callback` function. It allows you to set the context (value of * `this`) within the callback function. If `thisArg` is provided, it will be passed * @returns The `map` function is returning a new `BinaryTree` instance filled with entries that are * the result of applying the provided `callback` function to each entry in the original tree. */ map(callback: EntryCallback<K, V | undefined, [MK, MV]>, options?: BinaryTreeOptions<MK, MV, MR>, thisArg?: any): BinaryTree<MK, MV, MR>; /** * Time Complexity: O(n) * Space Complexity: O(n) * * The function `toVisual` in TypeScript overrides the visual representation of a binary tree with * customizable options f