double-double
Version:
Pure double-double precision functions *with strict error bounds*.
79 lines (64 loc) • 2.42 kB
text/typescript
/** @internal */
const f = 134217729; // 2**27 + 1;
/**
* Returns the product of a double-double-precision floating point number and a
* double.
*
* * slower than ALGORITHM 8 (one call to fastTwoSum more) but about 2x more
* accurate
* * relative error bound: 1.5u^2 + 4u^3, i.e. fl(a+b) = (a+b)(1+ϵ),
* where ϵ <= 1.5u^2 + 4u^3, u = 0.5 * Number.EPSILON
* * the bound is very sharp
* * probably prefer `ddMultDouble2` due to extra speed
*
* * ALGORITHM 7 of https://hal.archives-ouvertes.fr/hal-01351529v3/document
* @param y a double
* @param x a double-double precision floating point number
*/
function ddMultDouble1(y: number, x: number[]): number[] {
const xl = x[0];
const xh = x[1];
//const [cl1,ch] = twoProduct(xh,y);
const ch = xh*y;
const c = f * xh; const ah = c - (c - xh); const al = xh - ah;
const d = f * y; const bh = d - (d - y); const bl = y - bh;
const cl1 = (al*bl) - ((ch - (ah*bh)) - (al*bh) - (ah*bl));
const cl2 = xl*y;
//const [tl1,th] = fastTwoSum(ch,cl2);
const th = ch + cl2;
const tl1 = cl2 - (th - ch);
const tl2 = tl1 + cl1;
//const [zl,zh] = fastTwoSum(th,tl2);
const zh = th + tl2;
const zl = tl2 - (zh - th);
return [zl,zh];
}
/**
* Returns the product of a double-double-precision floating point number and a double.
*
* * faster than ALGORITHM 7 (one call to fastTwoSum less) but about 2x less
* accurate
* * relative error bound: 3u^2, i.e. fl(a*b) = (a*b)(1+ϵ),
* where ϵ <= 3u^2, u = 0.5 * Number.EPSILON
* * the bound is sharp
* * probably prefer this algorithm due to extra speed
*
* * ALGORITHM 8 of https://hal.archives-ouvertes.fr/hal-01351529v3/document
* @param y a double
* @param x a double-double precision floating point number
*/
function ddMultDouble2(y: number, x: number[]): number[] {
const xl = x[0];
const xh = x[1];
//const [cl1,ch] = twoProduct(xh,y);
const ch = xh*y;
const c = f * xh; const ah = c - (c - xh); const al = xh - ah;
const d = f * y; const bh = d - (d - y); const bl = y - bh;
const cl1 = (al*bl) - ((ch - (ah*bh)) - (al*bh) - (ah*bl));
const cl2 = xl*y;
const cl3 = cl1 + cl2;
//return fastTwoSum(ch,cl3);
const xx = ch + cl3;
return [cl3 - (xx - ch), xx];
}
export { ddMultDouble1, ddMultDouble2 }