UNPKG

double-double

Version:

Pure double-double precision functions *with strict error bounds*.

79 lines (64 loc) 2.42 kB
/** @internal */ const f = 134217729; // 2**27 + 1; /** * Returns the product of a double-double-precision floating point number and a * double. * * * slower than ALGORITHM 8 (one call to fastTwoSum more) but about 2x more * accurate * * relative error bound: 1.5u^2 + 4u^3, i.e. fl(a+b) = (a+b)(1+ϵ), * where ϵ <= 1.5u^2 + 4u^3, u = 0.5 * Number.EPSILON * * the bound is very sharp * * probably prefer `ddMultDouble2` due to extra speed * * * ALGORITHM 7 of https://hal.archives-ouvertes.fr/hal-01351529v3/document * @param y a double * @param x a double-double precision floating point number */ function ddMultDouble1(y: number, x: number[]): number[] { const xl = x[0]; const xh = x[1]; //const [cl1,ch] = twoProduct(xh,y); const ch = xh*y; const c = f * xh; const ah = c - (c - xh); const al = xh - ah; const d = f * y; const bh = d - (d - y); const bl = y - bh; const cl1 = (al*bl) - ((ch - (ah*bh)) - (al*bh) - (ah*bl)); const cl2 = xl*y; //const [tl1,th] = fastTwoSum(ch,cl2); const th = ch + cl2; const tl1 = cl2 - (th - ch); const tl2 = tl1 + cl1; //const [zl,zh] = fastTwoSum(th,tl2); const zh = th + tl2; const zl = tl2 - (zh - th); return [zl,zh]; } /** * Returns the product of a double-double-precision floating point number and a double. * * * faster than ALGORITHM 7 (one call to fastTwoSum less) but about 2x less * accurate * * relative error bound: 3u^2, i.e. fl(a*b) = (a*b)(1+ϵ), * where ϵ <= 3u^2, u = 0.5 * Number.EPSILON * * the bound is sharp * * probably prefer this algorithm due to extra speed * * * ALGORITHM 8 of https://hal.archives-ouvertes.fr/hal-01351529v3/document * @param y a double * @param x a double-double precision floating point number */ function ddMultDouble2(y: number, x: number[]): number[] { const xl = x[0]; const xh = x[1]; //const [cl1,ch] = twoProduct(xh,y); const ch = xh*y; const c = f * xh; const ah = c - (c - xh); const al = xh - ah; const d = f * y; const bh = d - (d - y); const bl = y - bh; const cl1 = (al*bl) - ((ch - (ah*bh)) - (al*bh) - (ah*bl)); const cl2 = xl*y; const cl3 = cl1 + cl2; //return fastTwoSum(ch,cl3); const xx = ch + cl3; return [cl3 - (xx - ch), xx]; } export { ddMultDouble1, ddMultDouble2 }