UNPKG

double-double

Version:

Pure double-double precision functions *with strict error bounds*.

37 lines (28 loc) 1.12 kB
/** @internal */ const f = 2**27 + 1; /** * Returns the product of two double-double-precision floating point numbers. * * * relative error bound: 7u^2, i.e. fl(a+b) = (a+b)(1+ϵ), * where ϵ <= 7u^2, u = 0.5 * Number.EPSILON * the error bound is not sharp - the worst case that could be found by the * authors were 5u^2 * * * ALGORITHM 10 of https://hal.archives-ouvertes.fr/hal-01351529v3/document * @param x a double-double precision floating point number * @param y another double-double precision floating point number */ function ddMultDd(x: number[], y: number[]): number[] { const xh = x[1]; const yh = y[1]; //const [cl1,ch] = twoProduct(xh,yh); const ch = xh*yh; const c = f * xh; const ah = c - (c - xh); const al = xh - ah; const d = f * yh; const bh = d - (d - yh); const bl = yh - bh; const cl1 = (al*bl) - ((ch - (ah*bh)) - (al*bh) - (ah*bl)); //return fastTwoSum(ch,cl1 + (xh*yl + xl*yh)); const b = cl1 + (xh*y[0] + x[0]*yh); const xx = ch + b; return [b - (xx - ch), xx]; } export { ddMultDd }