double-double
Version:
Pure double-double precision functions *with strict error bounds*.
37 lines (31 loc) • 1.26 kB
text/typescript
/**
* Returns the result of subtracting the second given double-double-precision
* floating point number from the first.
*
* * relative error bound: 3u^2 + 13u^3, i.e. fl(a-b) = (a-b)(1+ϵ),
* where ϵ <= 3u^2 + 13u^3, u = 0.5 * Number.EPSILON
* * the error bound is not sharp - the worst case that could be found by the
* authors were 2.25u^2
*
* ALGORITHM 6 of https://hal.archives-ouvertes.fr/hal-01351529v3/document
* @param x a double-double precision floating point number
* @param y another double-double precision floating point number
*/
function ddDiffDd(x: number[], y: number[]): number[] {
const xl = x[0];
const xh = x[1];
const yl = y[0];
const yh = y[1];
//const [sl,sh] = twoSum(xh,yh);
const sh = xh - yh; const _1 = sh - xh; const sl = (xh - (sh - _1)) + (-yh - _1);
//const [tl,th] = twoSum(xl,yl);
const th = xl - yl; const _2 = th - xl; const tl = (xl - (th - _2)) + (-yl - _2);
const c = sl + th;
//const [vl,vh] = fastTwoSum(sh,c)
const vh = sh + c; const vl = c - (vh - sh);
const w = tl + vl
//const [zl,zh] = fastTwoSum(vh,w)
const zh = vh + w; const zl = w - (zh - vh);
return [zl,zh];
}
export { ddDiffDd }