distributions-cauchy-quantile
Version:
Cauchy distribution quantile function.
404 lines (304 loc) • 10.2 kB
Markdown
Quantile Function
===
[![NPM version][npm-image]][npm-url] [![Build Status][travis-image]][travis-url] [![Coverage Status][codecov-image]][codecov-url] [![Dependencies][dependencies-image]][dependencies-url]
> [Cauchy](https://en.wikipedia.org/wiki/Cauchy_distribution) distribution [quantile function](https://en.wikipedia.org/wiki/Quantile_function).
The [quantile function](https://en.wikipedia.org/wiki/Quantile_function) for a [Cauchy](https://en.wikipedia.org/wiki/Cauchy_distribution) random variable is
<div class="equation" align="center" data-raw-text="Q(p; x_0,\gamma) = x_0 + \gamma\,\tan\left[\pi\left(p-\tfrac{1}{2}\right)\right]" data-equation="eq:quantile_function">
<img src="https://cdn.rawgit.com/distributions-io/cauchy-quantile/8cd8de3be84a93875a335f935e814a03fcfaa03b/docs/img/eqn.svg" alt="Quantile function for a Cauchy distribution.">
<br>
</div>
for `0 <= p < 1`, where `x0` is the location parameter and `gamma > 0` is the scale parameter.
``` bash
$ npm install distributions-cauchy-quantile
```
For use in the browser, use [browserify](https://github.com/substack/node-browserify).
``` javascript
var quantile = require( 'distributions-cauchy-quantile' );
```
Evaluates the [quantile function](https://en.wikipedia.org/wiki/Quantile_function) for the [Cauchy](https://en.wikipedia.org/wiki/Cauchy_distribution) distribution. `p` may be either a [`number`](https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Number) between `0` and `1`, an [`array`](https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Array), a [`typed array`](https://developer.mozilla.org/en-US/docs/Web/JavaScript/Typed_arrays), or a [`matrix`](https://github.com/dstructs/matrix).
``` javascript
var matrix = require( 'dstructs-matrix' ),
mat,
out,
x,
i;
out = quantile( 0.25 );
// returns ~-1
x = [ 0, 0.2, 0.4, 0.6, 0.8, 1 ];
out = quantile( x );
// returns [ -Infinity, ~-1.38, ~-0.325, ~0.325, ~1.38, +Infinity ]
x = new Float32Array( x );
out = quantile( x );
// returns Float64Array( [-Infinity,~-1.38,~-0.325,~0.325,~1.38,+Infinity] )
x = new Float32Array( 6 );
for ( i = 0; i < 6; i++ ) {
x[ i ] = i / 6;
}
mat = matrix( x, [3,2], 'float32' );
/*
[ 0 1/6
2/6 3/6
4/5 5/6 ]
*/
out = quantile( mat );
/*
[ -Infinity ~-1.73
~-0.577 ~0
~0.577 ~1.73 ]
*/
```
The function accepts the following `options`:
* __x0__: location parameter. Default: `0`.
* __gamma__: scale parameter. Default: `1`.
* __accessor__: accessor `function` for accessing `array` values.
* __dtype__: output [`typed array`](https://developer.mozilla.org/en-US/docs/Web/JavaScript/Typed_arrays) or [`matrix`](https://github.com/dstructs/matrix) data type. Default: `float64`.
* __copy__: `boolean` indicating if the `function` should return a new data structure. Default: `true`.
* __path__: [deepget](https://github.com/kgryte/utils-deep-get)/[deepset](https://github.com/kgryte/utils-deep-set) key path.
* __sep__: [deepget](https://github.com/kgryte/utils-deep-get)/[deepset](https://github.com/kgryte/utils-deep-set) key path separator. Default: `'.'`.
A [Cauchy](https://en.wikipedia.org/wiki/Cauchy_distribution) distribution is a function of two parameters: `x0`(location parameter) and `gamma > 0`(scale parameter). By default, `x0` is equal to `0` and `gamma` is equal to `1`. To adjust either parameter, set the corresponding options.
``` javascript
var x = [ 0, 0.2, 0.4, 0.6, 0.8, 1 ];
var out = quantile( x, {
'x0': 2,
'gamma': 1,
});
// returns [ -Infinity, ~0.624, ~1.68, ~2.32, ~3.38, +Infinity ]
```
For non-numeric `arrays`, provide an accessor `function` for accessing `array` values.
``` javascript
var data = [
[ ],
[ ],
[ ],
[ ],
[ ],
[ ]
];
function getValue( d, i ) {
return d[ 1 ];
}
var out = quantile( data, {
'accessor': getValue
});
// returns [ -Infinity, ~0.624, ~1.68, ~2.32, ~3.38, +Infinity ]
```
To [deepset](https://github.com/kgryte/utils-deep-set) an object `array`, provide a key path and, optionally, a key path separator.
``` javascript
var data = [
{'x':[0,0]},
{'x':[1,0.2]},
{'x':[2,0.4]},
{'x':[3,0.6]},
{'x':[4,0.8]},
{'x':[5,1]}
];
var out = quantile( data, {
'path': 'x/1',
'sep': '/'
});
/*
[
{'x':[0,-Infinity]},
{'x':[1,~0.624]},
{'x':[2,~1.68]},
{'x':[3,~2.32]},
{'x':[4,~3.38]},
{'x':[5,+Infinity]}
]
*/
var bool = ( data === out );
// returns true
```
By default, when provided a [`typed array`](https://developer.mozilla.org/en-US/docs/Web/JavaScript/Typed_arrays) or [`matrix`](https://github.com/dstructs/matrix), the output data structure is `float64` in order to preserve precision. To specify a different data type, set the `dtype` option (see [`matrix`](https://github.com/dstructs/matrix) for a list of acceptable data types).
``` javascript
var x, out;
x = new Float32Array( [0,0.2,0.4,0.6,0.8,1] );
out = quantile( x, {
'dtype': 'int32'
});
// returns Int32Array( [0,0,1,2,3,0] )
// BEWARE: Infinity is cast to `0` for integer arrays
// Works for plain arrays, as well...
out = quantile( [0,0.2,0.4,0.6,0.8,1], {
'dtype': 'float32'
});
// returns Float32Array( [-Infinity,~0.624,~1.68,~2.32,~3.38, +Infinity] )
```
By default, the function returns a new data structure. To mutate the input data structure (e.g., when input values can be discarded or when optimizing memory usage), set the `copy` option to `false`.
``` javascript
var bool,
mat,
out,
x,
i;
x = [ 0, 0.2, 0.4, 0.6, 0.8, 1 ];
out = quantile( x, {
'copy': false
});
// returns [ -Infinity, ~0.624, ~1.68, ~2.32, ~3.38, +Infinity ]
bool = ( x === out );
// returns true
x = new Float32Array( 6 );
for ( i = 0; i < 6; i++ ) {
x[ i ] = i / 6 ;
}
mat = matrix( x, [3,2], 'float32' );
/*
[ 0 1/6
2/6 3/6
4/5 5/6 ]
*/
out = quantile( mat, {
'copy': false
});
/*
[ -Infinity ~-1.73
~-0.577 ~0
~0.577 ~1.73 ]
*/
bool = ( mat === out );
// returns true
```
* For any `p` outside the interval `[0,1]`, the the evaluated [quantile function](https://en.wikipedia.org/wiki/Quantile_function) is `NaN`.
```javascript
var out;
out = quantile( 1.1 );
// returns NaN
out = quantile( -0.1 );
// returns NaN
```
* If an element is __not__ a numeric value, the evaluated [quantile function](https://en.wikipedia.org/wiki/Quantile_function) is `NaN`.
``` javascript
var data, out;
out = quantile( null );
// returns NaN
out = quantile( true );
// returns NaN
out = quantile( {'a':'b'} );
// returns NaN
out = quantile( [ true, null, [] ] );
// returns [ NaN, NaN, NaN ]
function getValue( d, i ) {
return d.x;
}
data = [
{'x':true},
{'x':[]},
{'x':{}},
{'x':null}
];
out = quantile( data, {
'accessor': getValue
});
// returns [ NaN, NaN, NaN, NaN ]
out = quantile( data, {
'path': 'x'
});
/*
[
{'x':NaN},
{'x':NaN},
{'x':NaN,
{'x':NaN}
]
*/
```
* Be careful when providing a data structure which contains non-numeric elements and specifying an `integer` output data type, as `NaN` values are cast to `0`.
``` javascript
var out = quantile( [ true, null, [] ], {
'dtype': 'int8'
});
// returns Int8Array( [0,0,0] );
```
``` javascript
var quantile = require( 'distributions-cauchy-quantile' ),
matrix = require( 'dstructs-matrix' );
var data,
mat,
out,
tmp,
i;
// Plain arrays...
data = new Array( 10 );
for ( i = 0; i < data.length; i++ ) {
data[ i ] = i / 10;
}
out = quantile( data );
// Object arrays (accessors)...
function getValue( d ) {
return d.x;
}
for ( i = 0; i < data.length; i++ ) {
data[ i ] = {
'x': data[ i ]
};
}
out = quantile( data, {
'accessor': getValue
});
// Deep set arrays...
for ( i = 0; i < data.length; i++ ) {
data[ i ] = {
'x': [ i, data[ i ].x ]
};
}
out = quantile( data, {
'path': 'x/1',
'sep': '/'
});
// Typed arrays...
data = new Float32Array( 10 );
for ( i = 0; i < data.length; i++ ) {
data[ i ] = i / 10;
}
out = quantile( data );
// Matrices...
mat = matrix( data, [5,2], 'float32' );
out = quantile( mat );
// Matrices (custom output data type)...
out = quantile( mat, {
'dtype': 'uint8'
});
```
To run the example code from the top-level application directory,
``` bash
$ node ./examples/index.js
```
Unit tests use the [Mocha](http://mochajs.org/) test framework with [Chai](http://chaijs.com) assertions. To run the tests, execute the following command in the top-level application directory:
``` bash
$ make test
```
All new feature development should have corresponding unit tests to validate correct functionality.
This repository uses [Istanbul](https://github.com/gotwarlost/istanbul) as its code coverage tool. To generate a test coverage report, execute the following command in the top-level application directory:
``` bash
$ make test-cov
```
Istanbul creates a `./reports/coverage` directory. To access an HTML version of the report,
``` bash
$ make view-cov
```
---
[ ](http://opensource.org/licenses/MIT).
Copyright © 2015. The [Compute.io](https://github.com/compute-io) Authors.
[ ]: http://img.shields.io/npm/v/distributions-cauchy-quantile.svg
[ ]: https://npmjs.org/package/distributions-cauchy-quantile
[ ]: http://img.shields.io/travis/distributions-io/cauchy-quantile/master.svg
[ ]: https://travis-ci.org/distributions-io/cauchy-quantile
[ ]: https://img.shields.io/codecov/c/github/distributions-io/cauchy-quantile/master.svg
[ ]: https://codecov.io/github/distributions-io/cauchy-quantile?branch=master
[ ]: http://img.shields.io/david/distributions-io/cauchy-quantile.svg
[ ]: https://david-dm.org/distributions-io/cauchy-quantile
[ ]: http://img.shields.io/david/dev/distributions-io/cauchy-quantile.svg
[ ]: https://david-dm.org/dev/distributions-io/cauchy-quantile
[ ]: http://img.shields.io/github/issues/distributions-io/cauchy-quantile.svg
[ ]: https://github.com/distributions-io/cauchy-quantile/issues