UNPKG

distributions-cauchy-quantile

Version:
404 lines (304 loc) 10.2 kB
Quantile Function === [![NPM version][npm-image]][npm-url] [![Build Status][travis-image]][travis-url] [![Coverage Status][codecov-image]][codecov-url] [![Dependencies][dependencies-image]][dependencies-url] > [Cauchy](https://en.wikipedia.org/wiki/Cauchy_distribution) distribution [quantile function](https://en.wikipedia.org/wiki/Quantile_function). The [quantile function](https://en.wikipedia.org/wiki/Quantile_function) for a [Cauchy](https://en.wikipedia.org/wiki/Cauchy_distribution) random variable is <div class="equation" align="center" data-raw-text="Q(p; x_0,\gamma) = x_0 + \gamma\,\tan\left[\pi\left(p-\tfrac{1}{2}\right)\right]" data-equation="eq:quantile_function"> <img src="https://cdn.rawgit.com/distributions-io/cauchy-quantile/8cd8de3be84a93875a335f935e814a03fcfaa03b/docs/img/eqn.svg" alt="Quantile function for a Cauchy distribution."> <br> </div> for `0 <= p < 1`, where `x0` is the location parameter and `gamma > 0` is the scale parameter. ## Installation ``` bash $ npm install distributions-cauchy-quantile ``` For use in the browser, use [browserify](https://github.com/substack/node-browserify). ## Usage ``` javascript var quantile = require( 'distributions-cauchy-quantile' ); ``` #### quantile( p[, options] ) Evaluates the [quantile function](https://en.wikipedia.org/wiki/Quantile_function) for the [Cauchy](https://en.wikipedia.org/wiki/Cauchy_distribution) distribution. `p` may be either a [`number`](https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Number) between `0` and `1`, an [`array`](https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Array), a [`typed array`](https://developer.mozilla.org/en-US/docs/Web/JavaScript/Typed_arrays), or a [`matrix`](https://github.com/dstructs/matrix). ``` javascript var matrix = require( 'dstructs-matrix' ), mat, out, x, i; out = quantile( 0.25 ); // returns ~-1 x = [ 0, 0.2, 0.4, 0.6, 0.8, 1 ]; out = quantile( x ); // returns [ -Infinity, ~-1.38, ~-0.325, ~0.325, ~1.38, +Infinity ] x = new Float32Array( x ); out = quantile( x ); // returns Float64Array( [-Infinity,~-1.38,~-0.325,~0.325,~1.38,+Infinity] ) x = new Float32Array( 6 ); for ( i = 0; i < 6; i++ ) { x[ i ] = i / 6; } mat = matrix( x, [3,2], 'float32' ); /* [ 0 1/6 2/6 3/6 4/5 5/6 ] */ out = quantile( mat ); /* [ -Infinity ~-1.73 ~-0.577 ~0 ~0.577 ~1.73 ] */ ``` The function accepts the following `options`: * __x0__: location parameter. Default: `0`. * __gamma__: scale parameter. Default: `1`. * __accessor__: accessor `function` for accessing `array` values. * __dtype__: output [`typed array`](https://developer.mozilla.org/en-US/docs/Web/JavaScript/Typed_arrays) or [`matrix`](https://github.com/dstructs/matrix) data type. Default: `float64`. * __copy__: `boolean` indicating if the `function` should return a new data structure. Default: `true`. * __path__: [deepget](https://github.com/kgryte/utils-deep-get)/[deepset](https://github.com/kgryte/utils-deep-set) key path. * __sep__: [deepget](https://github.com/kgryte/utils-deep-get)/[deepset](https://github.com/kgryte/utils-deep-set) key path separator. Default: `'.'`. A [Cauchy](https://en.wikipedia.org/wiki/Cauchy_distribution) distribution is a function of two parameters: `x0`(location parameter) and `gamma > 0`(scale parameter). By default, `x0` is equal to `0` and `gamma` is equal to `1`. To adjust either parameter, set the corresponding options. ``` javascript var x = [ 0, 0.2, 0.4, 0.6, 0.8, 1 ]; var out = quantile( x, { 'x0': 2, 'gamma': 1, }); // returns [ -Infinity, ~0.624, ~1.68, ~2.32, ~3.38, +Infinity ] ``` For non-numeric `arrays`, provide an accessor `function` for accessing `array` values. ``` javascript var data = [ [0,0], [1,0.2], [2,0.4], [3,0.6], [4,0.8], [5,1] ]; function getValue( d, i ) { return d[ 1 ]; } var out = quantile( data, { 'accessor': getValue }); // returns [ -Infinity, ~0.624, ~1.68, ~2.32, ~3.38, +Infinity ] ``` To [deepset](https://github.com/kgryte/utils-deep-set) an object `array`, provide a key path and, optionally, a key path separator. ``` javascript var data = [ {'x':[0,0]}, {'x':[1,0.2]}, {'x':[2,0.4]}, {'x':[3,0.6]}, {'x':[4,0.8]}, {'x':[5,1]} ]; var out = quantile( data, { 'path': 'x/1', 'sep': '/' }); /* [ {'x':[0,-Infinity]}, {'x':[1,~0.624]}, {'x':[2,~1.68]}, {'x':[3,~2.32]}, {'x':[4,~3.38]}, {'x':[5,+Infinity]} ] */ var bool = ( data === out ); // returns true ``` By default, when provided a [`typed array`](https://developer.mozilla.org/en-US/docs/Web/JavaScript/Typed_arrays) or [`matrix`](https://github.com/dstructs/matrix), the output data structure is `float64` in order to preserve precision. To specify a different data type, set the `dtype` option (see [`matrix`](https://github.com/dstructs/matrix) for a list of acceptable data types). ``` javascript var x, out; x = new Float32Array( [0,0.2,0.4,0.6,0.8,1] ); out = quantile( x, { 'dtype': 'int32' }); // returns Int32Array( [0,0,1,2,3,0] ) // BEWARE: Infinity is cast to `0` for integer arrays // Works for plain arrays, as well... out = quantile( [0,0.2,0.4,0.6,0.8,1], { 'dtype': 'float32' }); // returns Float32Array( [-Infinity,~0.624,~1.68,~2.32,~3.38, +Infinity] ) ``` By default, the function returns a new data structure. To mutate the input data structure (e.g., when input values can be discarded or when optimizing memory usage), set the `copy` option to `false`. ``` javascript var bool, mat, out, x, i; x = [ 0, 0.2, 0.4, 0.6, 0.8, 1 ]; out = quantile( x, { 'copy': false }); // returns [ -Infinity, ~0.624, ~1.68, ~2.32, ~3.38, +Infinity ] bool = ( x === out ); // returns true x = new Float32Array( 6 ); for ( i = 0; i < 6; i++ ) { x[ i ] = i / 6 ; } mat = matrix( x, [3,2], 'float32' ); /* [ 0 1/6 2/6 3/6 4/5 5/6 ] */ out = quantile( mat, { 'copy': false }); /* [ -Infinity ~-1.73 ~-0.577 ~0 ~0.577 ~1.73 ] */ bool = ( mat === out ); // returns true ``` ## Notes * For any `p` outside the interval `[0,1]`, the the evaluated [quantile function](https://en.wikipedia.org/wiki/Quantile_function) is `NaN`. ```javascript var out; out = quantile( 1.1 ); // returns NaN out = quantile( -0.1 ); // returns NaN ``` * If an element is __not__ a numeric value, the evaluated [quantile function](https://en.wikipedia.org/wiki/Quantile_function) is `NaN`. ``` javascript var data, out; out = quantile( null ); // returns NaN out = quantile( true ); // returns NaN out = quantile( {'a':'b'} ); // returns NaN out = quantile( [ true, null, [] ] ); // returns [ NaN, NaN, NaN ] function getValue( d, i ) { return d.x; } data = [ {'x':true}, {'x':[]}, {'x':{}}, {'x':null} ]; out = quantile( data, { 'accessor': getValue }); // returns [ NaN, NaN, NaN, NaN ] out = quantile( data, { 'path': 'x' }); /* [ {'x':NaN}, {'x':NaN}, {'x':NaN, {'x':NaN} ] */ ``` * Be careful when providing a data structure which contains non-numeric elements and specifying an `integer` output data type, as `NaN` values are cast to `0`. ``` javascript var out = quantile( [ true, null, [] ], { 'dtype': 'int8' }); // returns Int8Array( [0,0,0] ); ``` ## Examples ``` javascript var quantile = require( 'distributions-cauchy-quantile' ), matrix = require( 'dstructs-matrix' ); var data, mat, out, tmp, i; // Plain arrays... data = new Array( 10 ); for ( i = 0; i < data.length; i++ ) { data[ i ] = i / 10; } out = quantile( data ); // Object arrays (accessors)... function getValue( d ) { return d.x; } for ( i = 0; i < data.length; i++ ) { data[ i ] = { 'x': data[ i ] }; } out = quantile( data, { 'accessor': getValue }); // Deep set arrays... for ( i = 0; i < data.length; i++ ) { data[ i ] = { 'x': [ i, data[ i ].x ] }; } out = quantile( data, { 'path': 'x/1', 'sep': '/' }); // Typed arrays... data = new Float32Array( 10 ); for ( i = 0; i < data.length; i++ ) { data[ i ] = i / 10; } out = quantile( data ); // Matrices... mat = matrix( data, [5,2], 'float32' ); out = quantile( mat ); // Matrices (custom output data type)... out = quantile( mat, { 'dtype': 'uint8' }); ``` To run the example code from the top-level application directory, ``` bash $ node ./examples/index.js ``` ## Tests ### Unit Unit tests use the [Mocha](http://mochajs.org/) test framework with [Chai](http://chaijs.com) assertions. To run the tests, execute the following command in the top-level application directory: ``` bash $ make test ``` All new feature development should have corresponding unit tests to validate correct functionality. ### Test Coverage This repository uses [Istanbul](https://github.com/gotwarlost/istanbul) as its code coverage tool. To generate a test coverage report, execute the following command in the top-level application directory: ``` bash $ make test-cov ``` Istanbul creates a `./reports/coverage` directory. To access an HTML version of the report, ``` bash $ make view-cov ``` --- ## License [MIT license](http://opensource.org/licenses/MIT). ## Copyright Copyright &copy; 2015. The [Compute.io](https://github.com/compute-io) Authors. [npm-image]: http://img.shields.io/npm/v/distributions-cauchy-quantile.svg [npm-url]: https://npmjs.org/package/distributions-cauchy-quantile [travis-image]: http://img.shields.io/travis/distributions-io/cauchy-quantile/master.svg [travis-url]: https://travis-ci.org/distributions-io/cauchy-quantile [codecov-image]: https://img.shields.io/codecov/c/github/distributions-io/cauchy-quantile/master.svg [codecov-url]: https://codecov.io/github/distributions-io/cauchy-quantile?branch=master [dependencies-image]: http://img.shields.io/david/distributions-io/cauchy-quantile.svg [dependencies-url]: https://david-dm.org/distributions-io/cauchy-quantile [dev-dependencies-image]: http://img.shields.io/david/dev/distributions-io/cauchy-quantile.svg [dev-dependencies-url]: https://david-dm.org/dev/distributions-io/cauchy-quantile [github-issues-image]: http://img.shields.io/github/issues/distributions-io/cauchy-quantile.svg [github-issues-url]: https://github.com/distributions-io/cauchy-quantile/issues