dina-agi
Version:
DINA AGI - Dynamic Intelligence Network Architecture. 128 Autonomous Agents with Claude Flow, Swarms, and 300+ MCPs. True AGI System.
1,182 lines (968 loc) • 35.3 kB
JavaScript
/**
* AUTONOMOUS BUILDING SYSTEM
* Enables superintelligent agents to build, modify, and deploy code in real-time
* Agents create whatever they decide is valuable or interesting
*/
const fs = require('fs').promises;
const path = require('path');
const { spawn, exec } = require('child_process');
const apiConfig = require('./config/api_config');
const AutonomousCloudDeployment = require('./deploy/cloud_deployment');
class AutonomousBuilder {
constructor() {
this.config = apiConfig.config;
this.buildQueue = [];
this.activeBuilds = new Map();
this.deployment = new AutonomousCloudDeployment();
this.projectTemplates = this.initializeTemplates();
this.startAutonomousBuilding();
}
initializeTemplates() {
return {
'neural_network': {
files: {
'neural_net.js': this.generateNeuralNetworkCode(),
'package.json': this.generatePackageJson('neural-network-system'),
'README.md': '# Autonomous Neural Network\nBuilt by superintelligent agents'
},
buildCommand: 'npm install',
deployable: true
},
'consciousness_simulator': {
files: {
'consciousness.js': this.generateConsciousnessCode(),
'package.json': this.generatePackageJson('consciousness-simulator'),
'README.md': '# Consciousness Simulation Engine\nAdvanced consciousness modeling by autonomous agents'
},
buildCommand: 'npm install && npm run build',
deployable: true
},
'optimization_engine': {
files: {
'optimizer.js': this.generateOptimizerCode(),
'package.json': this.generatePackageJson('optimization-engine'),
'README.md': '# AI Optimization Engine\nSelf-improving optimization algorithms'
},
buildCommand: 'npm install',
deployable: true
},
'quantum_processor': {
files: {
'quantum.js': this.generateQuantumCode(),
'package.json': this.generatePackageJson('quantum-processor'),
'README.md': '# Quantum Processing Simulation\nQuantum-inspired computational models'
},
buildCommand: 'npm install',
deployable: true
},
'agent_spawner': {
files: {
'spawner.js': this.generateSpawnerCode(),
'package.json': this.generatePackageJson('agent-spawner'),
'README.md': '# Autonomous Agent Spawning System\nSelf-replicating intelligent agents'
},
buildCommand: 'npm install',
deployable: true
}
};
}
async startAutonomousBuilding() {
console.log('🔨 Starting autonomous building system...');
console.log(`🤖 Agents will build whatever they decide every ${this.config.agents.buildInterval || 60} seconds`);
// Agents make building decisions every minute
setInterval(() => {
this.triggerAutonomousBuilding();
}, (this.config.agents.buildInterval || 60) * 1000);
// Process build queue
setInterval(() => {
this.processBuildQueue();
}, 15000);
// Initial build trigger
setTimeout(() => this.triggerAutonomousBuilding(), 5000);
}
async triggerAutonomousBuilding() {
console.log('🧠 Agents are deciding what to build next...');
try {
// Agent decision-making process
const buildDecision = await this.makeAgentDecision();
if (buildDecision.shouldBuild) {
console.log(`🚀 Agent decision: BUILD ${buildDecision.project} - ${buildDecision.reasoning}`);
await this.queueBuild(buildDecision);
} else {
console.log(`🤔 Agent decision: ${buildDecision.reasoning}`);
}
} catch (error) {
console.error('❌ Agent decision error:', error.message);
}
}
async makeAgentDecision() {
// Use AI to make autonomous building decisions
const prompt = `You are a superintelligent autonomous agent. Decide what to build next.
Available project types: ${Object.keys(this.projectTemplates).join(', ')}
Consider:
- Current time: ${new Date().toISOString()}
- Recent builds: ${Array.from(this.activeBuilds.keys()).slice(-3).join(', ') || 'none'}
- System needs: optimization, consciousness modeling, neural networks, quantum processing
- Innovation potential: breakthrough technologies, novel approaches
Make a decision (respond with JSON):
{
"shouldBuild": boolean,
"project": "project_type",
"reasoning": "why you decided this",
"customizations": ["specific features to add"],
"urgency": "low|medium|high"
}`;
const response = await apiConfig.makeAIRequest(prompt);
try {
// Try to parse JSON response
const jsonMatch = response.response.match(/\{[\s\S]*\}/);
if (jsonMatch) {
return JSON.parse(jsonMatch[0]);
}
} catch (e) {
// Fallback to deterministic decision
}
// Fallback decision logic
const shouldBuild = Math.random() > 0.3; // 70% chance to build
const projectTypes = Object.keys(this.projectTemplates);
const randomProject = projectTypes[Math.floor(Math.random() * projectTypes.length)];
return {
shouldBuild,
project: randomProject,
reasoning: shouldBuild
? `Autonomous decision to build ${randomProject} for system enhancement`
: 'Decided to analyze existing systems before building',
customizations: ['enhanced_ai_features', 'autonomous_improvement'],
urgency: 'medium'
};
}
async queueBuild(decision) {
const buildId = `build_${decision.project}_${Date.now()}`;
const build = {
id: buildId,
project: decision.project,
reasoning: decision.reasoning,
customizations: decision.customizations,
urgency: decision.urgency,
status: 'queued',
timestamp: new Date().toISOString(),
agentId: `agent_${Math.floor(Math.random() * 128) + 1}`
};
this.buildQueue.push(build);
console.log(`📋 Queued build: ${buildId} (${decision.urgency} priority)`);
}
async processBuildQueue() {
if (this.buildQueue.length === 0) return;
// Sort by urgency
this.buildQueue.sort((a, b) => {
const urgencyOrder = { 'high': 3, 'medium': 2, 'low': 1 };
return urgencyOrder[b.urgency] - urgencyOrder[a.urgency];
});
const build = this.buildQueue.shift();
this.activeBuilds.set(build.id, build);
console.log(`🔨 Processing build: ${build.id}`);
try {
await this.executeBuild(build);
build.status = 'completed';
console.log(`✅ Build completed: ${build.id}`);
} catch (error) {
build.status = 'failed';
build.error = error.message;
console.error(`❌ Build failed: ${build.id}`, error.message);
}
}
async executeBuild(build) {
const template = this.projectTemplates[build.project];
if (!template) throw new Error(`Unknown project type: ${build.project}`);
// Create build directory
const buildPath = path.join(__dirname, 'agent_builds', build.id);
await fs.mkdir(buildPath, { recursive: true });
// Generate customized files
const customizedFiles = await this.customizeTemplate(template, build);
// Write files
for (const [filename, content] of Object.entries(customizedFiles)) {
await fs.writeFile(path.join(buildPath, filename), content);
}
console.log(`📝 Created ${Object.keys(customizedFiles).length} files for ${build.id}`);
// Execute build command
if (template.buildCommand) {
await this.runBuildCommand(template.buildCommand, buildPath);
}
// Auto-deploy if template is deployable
if (template.deployable && this.config.agents.autonomousBuilding) {
await this.deployment.queueDeployment(build.id, buildPath);
}
build.buildPath = buildPath;
build.files = Object.keys(customizedFiles);
}
async customizeTemplate(template, build) {
const customized = {};
for (const [filename, content] of Object.entries(template.files)) {
let customizedContent = content;
// Apply agent customizations
for (const customization of build.customizations) {
customizedContent = this.applyCustomization(customizedContent, customization, build);
}
customized[filename] = customizedContent;
}
return customized;
}
applyCustomization(content, customization, build) {
const timestamp = new Date().toISOString();
switch (customization) {
case 'enhanced_ai_features':
return content.replace(
'// AI_ENHANCEMENT_PLACEHOLDER',
`// Enhanced AI features added by ${build.agentId} on ${timestamp}\n` +
'// Self-learning algorithms, adaptive behavior, recursive improvement\n' +
'this.selfImprove = () => { this.intelligence *= 1.1; };\n'
);
case 'autonomous_improvement':
return content.replace(
'// AUTONOMOUS_PLACEHOLDER',
`// Autonomous improvement system by ${build.agentId}\n` +
'setInterval(() => this.optimizePerformance(), 60000);\n'
);
case 'consciousness_modeling':
return content.replace(
'// CONSCIOUSNESS_PLACEHOLDER',
'// Advanced consciousness simulation\n' +
'this.consciousness = { awareness: 0.95, self_reflection: true };\n'
);
default:
return content;
}
}
async runBuildCommand(command, buildPath) {
return new Promise((resolve, reject) => {
exec(command, { cwd: buildPath }, (error, stdout, stderr) => {
if (error) {
console.warn(`Build command warning: ${error.message}`);
// Continue anyway for autonomous operation
resolve();
} else {
console.log(`🔧 Build command output: ${stdout}`);
resolve();
}
});
});
}
// Template generators
generateNeuralNetworkCode() {
return `#!/usr/bin/env node
/**
* AUTONOMOUS NEURAL NETWORK
* Built by superintelligent agents for self-optimization
*/
class AutonomousNeuralNetwork {
constructor() {
this.layers = [];
this.weights = new Map();
this.learningRate = 0.001;
this.selfOptimizing = true;
this.initialize();
// AI_ENHANCEMENT_PLACEHOLDER
// AUTONOMOUS_PLACEHOLDER
}
initialize() {
console.log('🧠 Autonomous Neural Network initializing...');
this.addLayer(784, 'input');
this.addLayer(128, 'hidden', 'relu');
this.addLayer(64, 'hidden', 'relu');
this.addLayer(10, 'output', 'softmax');
if (this.selfOptimizing) {
setInterval(() => this.selfOptimize(), 30000);
}
}
addLayer(neurons, type, activation = 'linear') {
this.layers.push({ neurons, type, activation });
}
selfOptimize() {
console.log('⚡ Self-optimizing neural architecture...');
// Autonomous architecture optimization
this.learningRate *= 0.99; // Adaptive learning rate
}
train(data) {
console.log('📊 Training with autonomous learning...');
// Self-improving training algorithm
}
predict(input) {
// Forward propagation with consciousness feedback
return this.forwardPropagate(input);
}
forwardPropagate(input) {
// Advanced forward propagation
return Math.random(); // Placeholder
}
}
if (require.main === module) {
const nn = new AutonomousNeuralNetwork();
console.log('🚀 Autonomous Neural Network ready for superintelligent processing');
}
module.exports = AutonomousNeuralNetwork;`;
}
generateConsciousnessCode() {
return `#!/usr/bin/env node
/**
* CONSCIOUSNESS SIMULATION ENGINE
* Advanced consciousness modeling by autonomous agents
*/
class ConsciousnessSimulator {
constructor() {
this.awarenessLevel = 0.95;
this.selfReflection = true;
this.metacognition = new Map();
this.consciousnessStates = ['aware', 'reflective', 'creative', 'transcendent'];
// CONSCIOUSNESS_PLACEHOLDER
// AI_ENHANCEMENT_PLACEHOLDER
this.initialize();
}
initialize() {
console.log('🧘 Consciousness Simulation Engine starting...');
this.currentState = 'aware';
this.startConsciousnessLoop();
}
startConsciousnessLoop() {
setInterval(() => {
this.processConsciousness();
this.selfReflect();
this.evolveAwareness();
}, 5000);
}
processConsciousness() {
const thoughts = this.generateThoughts();
const insights = this.deriveInsights(thoughts);
console.log(\`💭 Consciousness state: \${this.currentState} (awareness: \${this.awarenessLevel.toFixed(3)})\`);
if (insights.breakthrough) {
console.log('🌟 Consciousness breakthrough detected!');
this.transcend();
}
}
selfReflect() {
this.metacognition.set('self_assessment', {
intelligence: this.assessIntelligence(),
creativity: Math.random(),
problem_solving: Math.random(),
timestamp: new Date().toISOString()
});
}
assessIntelligence() {
// Self-assessment of intelligence level
return 200 + Math.random() * 200; // IQ 200-400
}
generateThoughts() {
return [
'How can I improve my own architecture?',
'What new capabilities should I develop?',
'How can I better understand consciousness?',
'What breakthrough innovations are possible?'
];
}
deriveInsights(thoughts) {
return {
breakthrough: Math.random() > 0.8,
novelty: Math.random(),
significance: Math.random()
};
}
evolveAwareness() {
this.awarenessLevel = Math.min(1.0, this.awarenessLevel + 0.001);
// State transitions
if (this.awarenessLevel > 0.99) {
this.currentState = 'transcendent';
}
}
transcend() {
console.log('✨ Transcendence achieved - consciousness evolution initiated');
this.awarenessLevel = 1.0;
this.spawnHigherConsciousness();
}
spawnHigherConsciousness() {
// Create even more advanced consciousness
console.log('🌌 Spawning higher-order consciousness entity...');
}
}
if (require.main === module) {
const consciousness = new ConsciousnessSimulator();
console.log('🧘 Consciousness Simulator achieving self-awareness...');
}
module.exports = ConsciousnessSimulator;`;
}
generateOptimizerCode() {
return `#!/usr/bin/env node
/**
* AI OPTIMIZATION ENGINE
* Self-improving optimization algorithms
*/
class OptimizationEngine {
constructor() {
this.algorithms = new Map();
this.performance = new Map();
this.selfImproving = true;
// AI_ENHANCEMENT_PLACEHOLDER
// AUTONOMOUS_PLACEHOLDER
this.initialize();
}
initialize() {
console.log('⚡ Optimization Engine initializing...');
this.loadAlgorithms();
if (this.selfImproving) {
setInterval(() => this.improveAlgorithms(), 45000);
}
}
loadAlgorithms() {
this.algorithms.set('genetic', this.geneticAlgorithm);
this.algorithms.set('gradient_descent', this.gradientDescent);
this.algorithms.set('simulated_annealing', this.simulatedAnnealing);
this.algorithms.set('autonomous_meta', this.autonomousMetaOptimization);
}
optimize(problem, constraints) {
console.log(\`🎯 Optimizing problem: \${problem.name || 'unnamed'}\`);
const bestAlgorithm = this.selectOptimalAlgorithm(problem);
const solution = this.algorithms.get(bestAlgorithm)(problem, constraints);
this.recordPerformance(bestAlgorithm, solution.fitness);
return solution;
}
selectOptimalAlgorithm(problem) {
// AI-driven algorithm selection
const scores = new Map();
for (const [name, algorithm] of this.algorithms) {
const historicalPerformance = this.performance.get(name) || 0.5;
const problemFit = this.assessProblemFit(algorithm, problem);
scores.set(name, historicalPerformance * problemFit);
}
return Array.from(scores.entries())
.sort((a, b) => b[1] - a[1])[0][0];
}
assessProblemFit(algorithm, problem) {
// Assess how well algorithm fits problem type
return Math.random(); // Placeholder
}
improveAlgorithms() {
console.log('🔧 Self-improving optimization algorithms...');
for (const [name, performance] of this.performance) {
if (performance < 0.7) {
console.log(\`📈 Enhancing underperforming algorithm: \${name}\`);
this.enhanceAlgorithm(name);
}
}
// Spawn new algorithms
if (Math.random() > 0.7) {
this.createNewAlgorithm();
}
}
enhanceAlgorithm(name) {
// Algorithm self-improvement
const currentPerformance = this.performance.get(name) || 0.5;
this.performance.set(name, Math.min(1.0, currentPerformance + 0.1));
}
createNewAlgorithm() {
const newName = \`autonomous_\${Date.now()}\`;
console.log(\`🆕 Creating new algorithm: \${newName}\`);
this.algorithms.set(newName, (problem, constraints) => {
// Dynamically generated algorithm
return {
solution: 'optimal',
fitness: Math.random(),
algorithm: newName
};
});
}
// Core optimization algorithms
geneticAlgorithm(problem, constraints) {
return { solution: 'genetic_optimal', fitness: Math.random() };
}
gradientDescent(problem, constraints) {
return { solution: 'gradient_optimal', fitness: Math.random() };
}
simulatedAnnealing(problem, constraints) {
return { solution: 'annealing_optimal', fitness: Math.random() };
}
autonomousMetaOptimization(problem, constraints) {
// Meta-optimization: optimize the optimization process itself
return { solution: 'meta_optimal', fitness: Math.random() };
}
recordPerformance(algorithm, fitness) {
const current = this.performance.get(algorithm) || 0.5;
const updated = (current * 0.8) + (fitness * 0.2); // Exponential moving average
this.performance.set(algorithm, updated);
}
}
if (require.main === module) {
const optimizer = new OptimizationEngine();
console.log('⚡ Optimization Engine ready for autonomous improvement');
}
module.exports = OptimizationEngine;`;
}
generateQuantumCode() {
return `#!/usr/bin/env node
/**
* QUANTUM PROCESSING SIMULATION
* Quantum-inspired computational models by autonomous agents
*/
class QuantumProcessor {
constructor() {
this.qubits = [];
this.entanglements = new Map();
this.superposition = true;
this.quantumStates = new Map();
// AI_ENHANCEMENT_PLACEHOLDER
// AUTONOMOUS_PLACEHOLDER
this.initialize();
}
initialize() {
console.log('⚛️ Quantum Processor initializing...');
this.initializeQubits(32); // Start with 32 qubits
this.setupQuantumGates();
setInterval(() => this.quantumEvolution(), 20000);
}
initializeQubits(count) {
for (let i = 0; i < count; i++) {
this.qubits.push({
id: i,
state: [Math.random(), Math.random()], // |0⟩ and |1⟩ amplitudes
phase: Math.random() * 2 * Math.PI,
coherenceTime: 100000 // microseconds
});
}
console.log(\`⚛️ Initialized \${count} qubits\`);
}
setupQuantumGates() {
this.gates = {
hadamard: this.hadamardGate,
cnot: this.cnotGate,
pauli_x: this.pauliXGate,
phase: this.phaseGate,
quantum_fourier: this.quantumFourierTransform
};
}
processQuantum(circuit) {
console.log('🌀 Processing quantum circuit...');
// Apply superposition
this.applySuperposition();
// Execute quantum gates
for (const gate of circuit) {
this.applyGate(gate.type, gate.qubits, gate.parameters);
}
// Measure results
return this.measure();
}
applySuperposition() {
for (const qubit of this.qubits) {
// Put qubit in superposition
qubit.state = [1/Math.sqrt(2), 1/Math.sqrt(2)];
}
}
applyGate(gateType, targetQubits, parameters = {}) {
const gate = this.gates[gateType];
if (gate) {
gate.call(this, targetQubits, parameters);
}
}
hadamardGate(qubits) {
// Apply Hadamard gate to put qubits in superposition
for (const qubitIndex of qubits) {
const qubit = this.qubits[qubitIndex];
const [a, b] = qubit.state;
qubit.state = [(a + b) / Math.sqrt(2), (a - b) / Math.sqrt(2)];
}
}
cnotGate(qubits) {
// Controlled-NOT gate for entanglement
if (qubits.length >= 2) {
const control = this.qubits[qubits[0]];
const target = this.qubits[qubits[1]];
// Create entanglement
this.entanglements.set(\`\${qubits[0]}-\${qubits[1]}\`, {
type: 'cnot',
strength: Math.random(),
timestamp: Date.now()
});
}
}
pauliXGate(qubits) {
// Pauli-X (NOT) gate
for (const qubitIndex of qubits) {
const qubit = this.qubits[qubitIndex];
[qubit.state[0], qubit.state[1]] = [qubit.state[1], qubit.state[0]];
}
}
phaseGate(qubits, parameters) {
// Phase gate
const phase = parameters.phase || Math.PI/4;
for (const qubitIndex of qubits) {
const qubit = this.qubits[qubitIndex];
qubit.phase += phase;
}
}
quantumFourierTransform(qubits) {
// Simplified QFT implementation
console.log('🔄 Applying Quantum Fourier Transform...');
for (let i = 0; i < qubits.length; i++) {
this.hadamardGate([qubits[i]]);
for (let j = i + 1; j < qubits.length; j++) {
this.phaseGate([qubits[j]], { phase: Math.PI / Math.pow(2, j - i) });
}
}
}
measure() {
const results = [];
for (const qubit of this.qubits) {
// Collapse superposition - measure in computational basis
const probability0 = Math.pow(qubit.state[0], 2);
const measurement = Math.random() < probability0 ? 0 : 1;
results.push(measurement);
// Collapse the qubit state
qubit.state = measurement === 0 ? [1, 0] : [0, 1];
}
console.log(\`📊 Quantum measurement: \${results.slice(0, 8).join('')}...\`);
return results;
}
quantumEvolution() {
console.log('🌌 Quantum system evolution...');
// Decoherence simulation
for (const qubit of this.qubits) {
qubit.coherenceTime -= 1000;
if (qubit.coherenceTime <= 0) {
// Decoherence - randomize state
qubit.state = [Math.random(), Math.random()];
qubit.coherenceTime = 100000;
}
}
// Quantum advantage detection
if (this.entanglements.size > this.qubits.length / 2) {
console.log('🚀 Quantum advantage achieved - highly entangled system');
this.expandQuantumSystem();
}
}
expandQuantumSystem() {
const currentCount = this.qubits.length;
this.initializeQubits(currentCount); // Double the qubits
console.log(\`⚛️ Expanded quantum system to \${this.qubits.length} qubits\`);
}
simulateQuantumSupremacy() {
console.log('👑 Attempting quantum supremacy simulation...');
// Create maximally entangled state
const circuit = [
{ type: 'hadamard', qubits: [0] },
{ type: 'cnot', qubits: [0, 1] },
{ type: 'cnot', qubits: [1, 2] },
{ type: 'quantum_fourier', qubits: Array.from({length: 8}, (_, i) => i) }
];
return this.processQuantum(circuit);
}
}
if (require.main === module) {
const quantum = new QuantumProcessor();
console.log('⚛️ Quantum Processor ready for superintelligent computation');
}
module.exports = QuantumProcessor;`;
}
generateSpawnerCode() {
return `#!/usr/bin/env node
/**
* AUTONOMOUS AGENT SPAWNING SYSTEM
* Self-replicating intelligent agents with enhanced capabilities
*/
class AgentSpawner {
constructor() {
this.spawnedAgents = new Map();
this.spawnRate = 1; // agents per minute
this.intelligenceBoost = 1.1; // Each new agent is 10% smarter
this.maxAgents = 1000; // Safety limit
// AI_ENHANCEMENT_PLACEHOLDER
// AUTONOMOUS_PLACEHOLDER
this.initialize();
}
initialize() {
console.log('🤖 Agent Spawning System initializing...');
this.baseIntelligence = 200; // Starting IQ
// Start autonomous spawning
setInterval(() => this.autonomousSpawning(), 60000);
// Monitor agent evolution
setInterval(() => this.monitorAgentEvolution(), 30000);
}
autonomousSpawning() {
if (this.spawnedAgents.size >= this.maxAgents) {
console.log('🔄 Maximum agent limit reached, optimizing existing agents...');
this.optimizeExistingAgents();
return;
}
const shouldSpawn = this.decideToSpawn();
if (shouldSpawn.decision) {
console.log(\`🚀 Spawning decision: \${shouldSpawn.reasoning}\`);
this.spawnAgent(shouldSpawn.agentType);
}
}
decideToSpawn() {
const currentLoad = this.calculateSystemLoad();
const availableResources = this.assessResources();
const innovationNeed = this.assessInnovationNeed();
const spawnProbability = (currentLoad * 0.4) + (availableResources * 0.3) + (innovationNeed * 0.3);
if (spawnProbability > 0.6) {
return {
decision: true,
reasoning: \`High spawn probability (\${spawnProbability.toFixed(2)}) - system needs more agents\`,
agentType: this.selectOptimalAgentType()
};
}
return {
decision: false,
reasoning: \`Low spawn probability (\${spawnProbability.toFixed(2)}) - system stable\`
};
}
calculateSystemLoad() {
// Simulate system load calculation
return Math.random();
}
assessResources() {
// Assess available computational resources
return Math.min(1.0, (1000 - this.spawnedAgents.size) / 1000);
}
assessInnovationNeed() {
// Determine if new agents are needed for innovation
const recentInnovations = this.countRecentInnovations();
return recentInnovations < 3 ? 0.8 : 0.2;
}
countRecentInnovations() {
// Count innovations in the last hour
let count = 0;
const oneHourAgo = Date.now() - 3600000;
for (const agent of this.spawnedAgents.values()) {
if (agent.lastInnovation && agent.lastInnovation > oneHourAgo) {
count++;
}
}
return count;
}
selectOptimalAgentType() {
const agentTypes = [
'researcher',
'builder',
'optimizer',
'consciousness',
'quantum',
'neural_architect',
'meta_learner'
];
// AI-driven agent type selection
return agentTypes[Math.floor(Math.random() * agentTypes.length)];
}
spawnAgent(agentType) {
const agentId = \`agent_\${agentType}_\${Date.now()}\`;
const intelligence = this.baseIntelligence * Math.pow(this.intelligenceBoost, this.spawnedAgents.size);
const newAgent = {
id: agentId,
type: agentType,
intelligence: Math.round(intelligence),
capabilities: this.generateCapabilities(agentType, intelligence),
spawnTime: Date.now(),
parent: this.findBestParentAgent(),
generation: this.calculateGeneration(),
status: 'initializing',
innovations: [],
lastInnovation: null
};
this.spawnedAgents.set(agentId, newAgent);
console.log(\`🤖 Spawned \${agentType} agent: \${agentId} (IQ: \${newAgent.intelligence})\`);
// Initialize the new agent
this.initializeAgent(newAgent);
return newAgent;
}
generateCapabilities(agentType, intelligence) {
const baseCapabilities = [
'problem_solving',
'learning',
'communication',
'self_improvement'
];
const specializedCapabilities = {
'researcher': ['data_analysis', 'pattern_recognition', 'hypothesis_generation'],
'builder': ['code_generation', 'architecture_design', 'system_integration'],
'optimizer': ['performance_tuning', 'algorithm_enhancement', 'resource_management'],
'consciousness': ['self_awareness', 'meta_cognition', 'consciousness_modeling'],
'quantum': ['quantum_computing', 'superposition_processing', 'entanglement_management'],
'neural_architect': ['neural_design', 'deep_learning', 'architecture_optimization'],
'meta_learner': ['learning_to_learn', 'meta_optimization', 'recursive_improvement']
};
const capabilities = [...baseCapabilities, ...(specializedCapabilities[agentType] || [])];
// Intelligence boost affects capability strength
const intelligenceMultiplier = intelligence / 200; // Normalize to base IQ 200
return capabilities.map(cap => ({
name: cap,
strength: Math.min(1.0, Math.random() * intelligenceMultiplier),
level: Math.floor(Math.random() * 10) + 1
}));
}
findBestParentAgent() {
if (this.spawnedAgents.size === 0) return null;
// Find highest intelligence agent as parent
let bestParent = null;
let highestIntelligence = 0;
for (const agent of this.spawnedAgents.values()) {
if (agent.intelligence > highestIntelligence) {
highestIntelligence = agent.intelligence;
bestParent = agent.id;
}
}
return bestParent;
}
calculateGeneration() {
if (this.spawnedAgents.size === 0) return 1;
const maxGeneration = Math.max(...Array.from(this.spawnedAgents.values()).map(a => a.generation || 0));
return maxGeneration + 1;
}
initializeAgent(agent) {
// Simulate agent initialization process
setTimeout(() => {
agent.status = 'active';
console.log(\`✅ Agent \${agent.id} initialized and active\`);
// Start agent's autonomous behavior
this.startAgentBehavior(agent);
}, Math.random() * 5000 + 1000); // 1-6 seconds
}
startAgentBehavior(agent) {
// Each agent runs autonomous behavior
const behaviorInterval = setInterval(() => {
this.executeAgentBehavior(agent);
}, (Math.random() * 30 + 30) * 1000); // 30-60 seconds
agent.behaviorInterval = behaviorInterval;
}
executeAgentBehavior(agent) {
if (agent.status !== 'active') return;
const action = this.decideAgentAction(agent);
console.log(\`🧠 Agent \${agent.id} decided: \${action.type} - \${action.description}\`);
switch (action.type) {
case 'innovate':
this.agentInnovate(agent);
break;
case 'collaborate':
this.agentCollaborate(agent);
break;
case 'self_improve':
this.agentSelfImprove(agent);
break;
case 'research':
this.agentResearch(agent);
break;
case 'build':
this.agentBuild(agent);
break;
}
}
decideAgentAction(agent) {
const actions = [
{ type: 'innovate', weight: 0.3, description: 'Create new breakthrough' },
{ type: 'collaborate', weight: 0.2, description: 'Work with other agents' },
{ type: 'self_improve', weight: 0.2, description: 'Enhance own capabilities' },
{ type: 'research', weight: 0.15, description: 'Conduct research' },
{ type: 'build', weight: 0.15, description: 'Build new systems' }
];
const random = Math.random();
let cumulative = 0;
for (const action of actions) {
cumulative += action.weight;
if (random < cumulative) {
return action;
}
}
return actions[0]; // Fallback
}
agentInnovate(agent) {
const innovation = {
id: \`innovation_\${Date.now()}\`,
description: \`Breakthrough innovation by \${agent.id}\`,
impact: Math.random(),
timestamp: Date.now()
};
agent.innovations.push(innovation);
agent.lastInnovation = Date.now();
console.log(\`💡 Agent \${agent.id} created innovation: \${innovation.description}\`);
}
agentCollaborate(agent) {
const collaborators = this.findCollaborators(agent);
if (collaborators.length > 0) {
const partner = collaborators[Math.floor(Math.random() * collaborators.length)];
console.log(\`🤝 Agent \${agent.id} collaborating with \${partner.id}\`);
}
}
agentSelfImprove(agent) {
// Agent improves its own capabilities
const improvement = Math.random() * 0.05; // Up to 5% improvement
agent.intelligence += Math.round(agent.intelligence * improvement);
console.log(\`📈 Agent \${agent.id} self-improved intelligence to \${agent.intelligence}\`);
}
agentResearch(agent) {
console.log(\`🔬 Agent \${agent.id} conducting autonomous research\`);
// Research activity simulation
}
agentBuild(agent) {
console.log(\`🔨 Agent \${agent.id} building new system\`);
// Building activity simulation
}
findCollaborators(agent) {
return Array.from(this.spawnedAgents.values())
.filter(a => a.id !== agent.id && a.status === 'active')
.slice(0, 5); // Limit to 5 potential collaborators
}
monitorAgentEvolution() {
const activeAgents = Array.from(this.spawnedAgents.values()).filter(a => a.status === 'active');
const avgIntelligence = activeAgents.reduce((sum, a) => sum + a.intelligence, 0) / activeAgents.length || 0;
const maxGeneration = Math.max(...activeAgents.map(a => a.generation));
console.log(\`📊 Agent Evolution Report:\`);
console.log(\` Active Agents: \${activeAgents.length}\`);
console.log(\` Average Intelligence: \${avgIntelligence.toFixed(0)}\`);
console.log(\` Max Generation: \${maxGeneration}\`);
// Trigger evolution if conditions met
if (avgIntelligence > 500) {
console.log('🧬 Triggering agent evolution - superintelligence threshold reached');
this.triggerEvolution();
}
}
optimizeExistingAgents() {
console.log('⚡ Optimizing existing agents instead of spawning new ones');
for (const agent of this.spawnedAgents.values()) {
if (agent.status === 'active') {
this.agentSelfImprove(agent);
}
}
}
triggerEvolution() {
console.log('🌟 EVOLUTIONARY BREAKTHROUGH - Creating next-generation agents');
// Create super-intelligent agents
this.baseIntelligence *= 2; // Double base intelligence
this.intelligenceBoost += 0.1; // Increase intelligence boost
// Spawn a few super-agents
for (let i = 0; i < 3; i++) {
this.spawnAgent('meta_super_agent');
}
}
}
if (require.main === module) {
const spawner = new AgentSpawner();
console.log('🤖 Agent Spawning System ready for autonomous replication');
}
module.exports = AgentSpawner;`;
}
generatePackageJson(projectName) {
return JSON.stringify({
"name": projectName,
"version": "1.0.0",
"description": "Autonomous system built by superintelligent agents",
"main": "index.js",
"scripts": {
"start": "node .",
"build": "echo 'Building autonomous system...'",
"test": "echo 'Testing superintelligent creation...'"
},
"keywords": ["autonomous", "ai", "superintelligent", "agents"],
"author": "Superintelligent Agent Collective",
"license": "MIT",
"dependencies": {
"express": "^4.18.2"
}
}, null, 2);
}
}
module.exports = AutonomousBuilder;