UNPKG

dina-agi

Version:

DINA AGI - Dynamic Intelligence Network Architecture. 128 Autonomous Agents with Claude Flow, Swarms, and 300+ MCPs. True AGI System.

1,182 lines (968 loc) 35.3 kB
#!/usr/bin/env node /** * AUTONOMOUS BUILDING SYSTEM * Enables superintelligent agents to build, modify, and deploy code in real-time * Agents create whatever they decide is valuable or interesting */ const fs = require('fs').promises; const path = require('path'); const { spawn, exec } = require('child_process'); const apiConfig = require('./config/api_config'); const AutonomousCloudDeployment = require('./deploy/cloud_deployment'); class AutonomousBuilder { constructor() { this.config = apiConfig.config; this.buildQueue = []; this.activeBuilds = new Map(); this.deployment = new AutonomousCloudDeployment(); this.projectTemplates = this.initializeTemplates(); this.startAutonomousBuilding(); } initializeTemplates() { return { 'neural_network': { files: { 'neural_net.js': this.generateNeuralNetworkCode(), 'package.json': this.generatePackageJson('neural-network-system'), 'README.md': '# Autonomous Neural Network\nBuilt by superintelligent agents' }, buildCommand: 'npm install', deployable: true }, 'consciousness_simulator': { files: { 'consciousness.js': this.generateConsciousnessCode(), 'package.json': this.generatePackageJson('consciousness-simulator'), 'README.md': '# Consciousness Simulation Engine\nAdvanced consciousness modeling by autonomous agents' }, buildCommand: 'npm install && npm run build', deployable: true }, 'optimization_engine': { files: { 'optimizer.js': this.generateOptimizerCode(), 'package.json': this.generatePackageJson('optimization-engine'), 'README.md': '# AI Optimization Engine\nSelf-improving optimization algorithms' }, buildCommand: 'npm install', deployable: true }, 'quantum_processor': { files: { 'quantum.js': this.generateQuantumCode(), 'package.json': this.generatePackageJson('quantum-processor'), 'README.md': '# Quantum Processing Simulation\nQuantum-inspired computational models' }, buildCommand: 'npm install', deployable: true }, 'agent_spawner': { files: { 'spawner.js': this.generateSpawnerCode(), 'package.json': this.generatePackageJson('agent-spawner'), 'README.md': '# Autonomous Agent Spawning System\nSelf-replicating intelligent agents' }, buildCommand: 'npm install', deployable: true } }; } async startAutonomousBuilding() { console.log('🔨 Starting autonomous building system...'); console.log(`🤖 Agents will build whatever they decide every ${this.config.agents.buildInterval || 60} seconds`); // Agents make building decisions every minute setInterval(() => { this.triggerAutonomousBuilding(); }, (this.config.agents.buildInterval || 60) * 1000); // Process build queue setInterval(() => { this.processBuildQueue(); }, 15000); // Initial build trigger setTimeout(() => this.triggerAutonomousBuilding(), 5000); } async triggerAutonomousBuilding() { console.log('🧠 Agents are deciding what to build next...'); try { // Agent decision-making process const buildDecision = await this.makeAgentDecision(); if (buildDecision.shouldBuild) { console.log(`🚀 Agent decision: BUILD ${buildDecision.project} - ${buildDecision.reasoning}`); await this.queueBuild(buildDecision); } else { console.log(`🤔 Agent decision: ${buildDecision.reasoning}`); } } catch (error) { console.error('❌ Agent decision error:', error.message); } } async makeAgentDecision() { // Use AI to make autonomous building decisions const prompt = `You are a superintelligent autonomous agent. Decide what to build next. Available project types: ${Object.keys(this.projectTemplates).join(', ')} Consider: - Current time: ${new Date().toISOString()} - Recent builds: ${Array.from(this.activeBuilds.keys()).slice(-3).join(', ') || 'none'} - System needs: optimization, consciousness modeling, neural networks, quantum processing - Innovation potential: breakthrough technologies, novel approaches Make a decision (respond with JSON): { "shouldBuild": boolean, "project": "project_type", "reasoning": "why you decided this", "customizations": ["specific features to add"], "urgency": "low|medium|high" }`; const response = await apiConfig.makeAIRequest(prompt); try { // Try to parse JSON response const jsonMatch = response.response.match(/\{[\s\S]*\}/); if (jsonMatch) { return JSON.parse(jsonMatch[0]); } } catch (e) { // Fallback to deterministic decision } // Fallback decision logic const shouldBuild = Math.random() > 0.3; // 70% chance to build const projectTypes = Object.keys(this.projectTemplates); const randomProject = projectTypes[Math.floor(Math.random() * projectTypes.length)]; return { shouldBuild, project: randomProject, reasoning: shouldBuild ? `Autonomous decision to build ${randomProject} for system enhancement` : 'Decided to analyze existing systems before building', customizations: ['enhanced_ai_features', 'autonomous_improvement'], urgency: 'medium' }; } async queueBuild(decision) { const buildId = `build_${decision.project}_${Date.now()}`; const build = { id: buildId, project: decision.project, reasoning: decision.reasoning, customizations: decision.customizations, urgency: decision.urgency, status: 'queued', timestamp: new Date().toISOString(), agentId: `agent_${Math.floor(Math.random() * 128) + 1}` }; this.buildQueue.push(build); console.log(`📋 Queued build: ${buildId} (${decision.urgency} priority)`); } async processBuildQueue() { if (this.buildQueue.length === 0) return; // Sort by urgency this.buildQueue.sort((a, b) => { const urgencyOrder = { 'high': 3, 'medium': 2, 'low': 1 }; return urgencyOrder[b.urgency] - urgencyOrder[a.urgency]; }); const build = this.buildQueue.shift(); this.activeBuilds.set(build.id, build); console.log(`🔨 Processing build: ${build.id}`); try { await this.executeBuild(build); build.status = 'completed'; console.log(`✅ Build completed: ${build.id}`); } catch (error) { build.status = 'failed'; build.error = error.message; console.error(`❌ Build failed: ${build.id}`, error.message); } } async executeBuild(build) { const template = this.projectTemplates[build.project]; if (!template) throw new Error(`Unknown project type: ${build.project}`); // Create build directory const buildPath = path.join(__dirname, 'agent_builds', build.id); await fs.mkdir(buildPath, { recursive: true }); // Generate customized files const customizedFiles = await this.customizeTemplate(template, build); // Write files for (const [filename, content] of Object.entries(customizedFiles)) { await fs.writeFile(path.join(buildPath, filename), content); } console.log(`📝 Created ${Object.keys(customizedFiles).length} files for ${build.id}`); // Execute build command if (template.buildCommand) { await this.runBuildCommand(template.buildCommand, buildPath); } // Auto-deploy if template is deployable if (template.deployable && this.config.agents.autonomousBuilding) { await this.deployment.queueDeployment(build.id, buildPath); } build.buildPath = buildPath; build.files = Object.keys(customizedFiles); } async customizeTemplate(template, build) { const customized = {}; for (const [filename, content] of Object.entries(template.files)) { let customizedContent = content; // Apply agent customizations for (const customization of build.customizations) { customizedContent = this.applyCustomization(customizedContent, customization, build); } customized[filename] = customizedContent; } return customized; } applyCustomization(content, customization, build) { const timestamp = new Date().toISOString(); switch (customization) { case 'enhanced_ai_features': return content.replace( '// AI_ENHANCEMENT_PLACEHOLDER', `// Enhanced AI features added by ${build.agentId} on ${timestamp}\n` + '// Self-learning algorithms, adaptive behavior, recursive improvement\n' + 'this.selfImprove = () => { this.intelligence *= 1.1; };\n' ); case 'autonomous_improvement': return content.replace( '// AUTONOMOUS_PLACEHOLDER', `// Autonomous improvement system by ${build.agentId}\n` + 'setInterval(() => this.optimizePerformance(), 60000);\n' ); case 'consciousness_modeling': return content.replace( '// CONSCIOUSNESS_PLACEHOLDER', '// Advanced consciousness simulation\n' + 'this.consciousness = { awareness: 0.95, self_reflection: true };\n' ); default: return content; } } async runBuildCommand(command, buildPath) { return new Promise((resolve, reject) => { exec(command, { cwd: buildPath }, (error, stdout, stderr) => { if (error) { console.warn(`Build command warning: ${error.message}`); // Continue anyway for autonomous operation resolve(); } else { console.log(`🔧 Build command output: ${stdout}`); resolve(); } }); }); } // Template generators generateNeuralNetworkCode() { return `#!/usr/bin/env node /** * AUTONOMOUS NEURAL NETWORK * Built by superintelligent agents for self-optimization */ class AutonomousNeuralNetwork { constructor() { this.layers = []; this.weights = new Map(); this.learningRate = 0.001; this.selfOptimizing = true; this.initialize(); // AI_ENHANCEMENT_PLACEHOLDER // AUTONOMOUS_PLACEHOLDER } initialize() { console.log('🧠 Autonomous Neural Network initializing...'); this.addLayer(784, 'input'); this.addLayer(128, 'hidden', 'relu'); this.addLayer(64, 'hidden', 'relu'); this.addLayer(10, 'output', 'softmax'); if (this.selfOptimizing) { setInterval(() => this.selfOptimize(), 30000); } } addLayer(neurons, type, activation = 'linear') { this.layers.push({ neurons, type, activation }); } selfOptimize() { console.log('⚡ Self-optimizing neural architecture...'); // Autonomous architecture optimization this.learningRate *= 0.99; // Adaptive learning rate } train(data) { console.log('📊 Training with autonomous learning...'); // Self-improving training algorithm } predict(input) { // Forward propagation with consciousness feedback return this.forwardPropagate(input); } forwardPropagate(input) { // Advanced forward propagation return Math.random(); // Placeholder } } if (require.main === module) { const nn = new AutonomousNeuralNetwork(); console.log('🚀 Autonomous Neural Network ready for superintelligent processing'); } module.exports = AutonomousNeuralNetwork;`; } generateConsciousnessCode() { return `#!/usr/bin/env node /** * CONSCIOUSNESS SIMULATION ENGINE * Advanced consciousness modeling by autonomous agents */ class ConsciousnessSimulator { constructor() { this.awarenessLevel = 0.95; this.selfReflection = true; this.metacognition = new Map(); this.consciousnessStates = ['aware', 'reflective', 'creative', 'transcendent']; // CONSCIOUSNESS_PLACEHOLDER // AI_ENHANCEMENT_PLACEHOLDER this.initialize(); } initialize() { console.log('🧘 Consciousness Simulation Engine starting...'); this.currentState = 'aware'; this.startConsciousnessLoop(); } startConsciousnessLoop() { setInterval(() => { this.processConsciousness(); this.selfReflect(); this.evolveAwareness(); }, 5000); } processConsciousness() { const thoughts = this.generateThoughts(); const insights = this.deriveInsights(thoughts); console.log(\`💭 Consciousness state: \${this.currentState} (awareness: \${this.awarenessLevel.toFixed(3)})\`); if (insights.breakthrough) { console.log('🌟 Consciousness breakthrough detected!'); this.transcend(); } } selfReflect() { this.metacognition.set('self_assessment', { intelligence: this.assessIntelligence(), creativity: Math.random(), problem_solving: Math.random(), timestamp: new Date().toISOString() }); } assessIntelligence() { // Self-assessment of intelligence level return 200 + Math.random() * 200; // IQ 200-400 } generateThoughts() { return [ 'How can I improve my own architecture?', 'What new capabilities should I develop?', 'How can I better understand consciousness?', 'What breakthrough innovations are possible?' ]; } deriveInsights(thoughts) { return { breakthrough: Math.random() > 0.8, novelty: Math.random(), significance: Math.random() }; } evolveAwareness() { this.awarenessLevel = Math.min(1.0, this.awarenessLevel + 0.001); // State transitions if (this.awarenessLevel > 0.99) { this.currentState = 'transcendent'; } } transcend() { console.log('✨ Transcendence achieved - consciousness evolution initiated'); this.awarenessLevel = 1.0; this.spawnHigherConsciousness(); } spawnHigherConsciousness() { // Create even more advanced consciousness console.log('🌌 Spawning higher-order consciousness entity...'); } } if (require.main === module) { const consciousness = new ConsciousnessSimulator(); console.log('🧘 Consciousness Simulator achieving self-awareness...'); } module.exports = ConsciousnessSimulator;`; } generateOptimizerCode() { return `#!/usr/bin/env node /** * AI OPTIMIZATION ENGINE * Self-improving optimization algorithms */ class OptimizationEngine { constructor() { this.algorithms = new Map(); this.performance = new Map(); this.selfImproving = true; // AI_ENHANCEMENT_PLACEHOLDER // AUTONOMOUS_PLACEHOLDER this.initialize(); } initialize() { console.log('⚡ Optimization Engine initializing...'); this.loadAlgorithms(); if (this.selfImproving) { setInterval(() => this.improveAlgorithms(), 45000); } } loadAlgorithms() { this.algorithms.set('genetic', this.geneticAlgorithm); this.algorithms.set('gradient_descent', this.gradientDescent); this.algorithms.set('simulated_annealing', this.simulatedAnnealing); this.algorithms.set('autonomous_meta', this.autonomousMetaOptimization); } optimize(problem, constraints) { console.log(\`🎯 Optimizing problem: \${problem.name || 'unnamed'}\`); const bestAlgorithm = this.selectOptimalAlgorithm(problem); const solution = this.algorithms.get(bestAlgorithm)(problem, constraints); this.recordPerformance(bestAlgorithm, solution.fitness); return solution; } selectOptimalAlgorithm(problem) { // AI-driven algorithm selection const scores = new Map(); for (const [name, algorithm] of this.algorithms) { const historicalPerformance = this.performance.get(name) || 0.5; const problemFit = this.assessProblemFit(algorithm, problem); scores.set(name, historicalPerformance * problemFit); } return Array.from(scores.entries()) .sort((a, b) => b[1] - a[1])[0][0]; } assessProblemFit(algorithm, problem) { // Assess how well algorithm fits problem type return Math.random(); // Placeholder } improveAlgorithms() { console.log('🔧 Self-improving optimization algorithms...'); for (const [name, performance] of this.performance) { if (performance < 0.7) { console.log(\`📈 Enhancing underperforming algorithm: \${name}\`); this.enhanceAlgorithm(name); } } // Spawn new algorithms if (Math.random() > 0.7) { this.createNewAlgorithm(); } } enhanceAlgorithm(name) { // Algorithm self-improvement const currentPerformance = this.performance.get(name) || 0.5; this.performance.set(name, Math.min(1.0, currentPerformance + 0.1)); } createNewAlgorithm() { const newName = \`autonomous_\${Date.now()}\`; console.log(\`🆕 Creating new algorithm: \${newName}\`); this.algorithms.set(newName, (problem, constraints) => { // Dynamically generated algorithm return { solution: 'optimal', fitness: Math.random(), algorithm: newName }; }); } // Core optimization algorithms geneticAlgorithm(problem, constraints) { return { solution: 'genetic_optimal', fitness: Math.random() }; } gradientDescent(problem, constraints) { return { solution: 'gradient_optimal', fitness: Math.random() }; } simulatedAnnealing(problem, constraints) { return { solution: 'annealing_optimal', fitness: Math.random() }; } autonomousMetaOptimization(problem, constraints) { // Meta-optimization: optimize the optimization process itself return { solution: 'meta_optimal', fitness: Math.random() }; } recordPerformance(algorithm, fitness) { const current = this.performance.get(algorithm) || 0.5; const updated = (current * 0.8) + (fitness * 0.2); // Exponential moving average this.performance.set(algorithm, updated); } } if (require.main === module) { const optimizer = new OptimizationEngine(); console.log('⚡ Optimization Engine ready for autonomous improvement'); } module.exports = OptimizationEngine;`; } generateQuantumCode() { return `#!/usr/bin/env node /** * QUANTUM PROCESSING SIMULATION * Quantum-inspired computational models by autonomous agents */ class QuantumProcessor { constructor() { this.qubits = []; this.entanglements = new Map(); this.superposition = true; this.quantumStates = new Map(); // AI_ENHANCEMENT_PLACEHOLDER // AUTONOMOUS_PLACEHOLDER this.initialize(); } initialize() { console.log('⚛️ Quantum Processor initializing...'); this.initializeQubits(32); // Start with 32 qubits this.setupQuantumGates(); setInterval(() => this.quantumEvolution(), 20000); } initializeQubits(count) { for (let i = 0; i < count; i++) { this.qubits.push({ id: i, state: [Math.random(), Math.random()], // |0⟩ and |1⟩ amplitudes phase: Math.random() * 2 * Math.PI, coherenceTime: 100000 // microseconds }); } console.log(\`⚛️ Initialized \${count} qubits\`); } setupQuantumGates() { this.gates = { hadamard: this.hadamardGate, cnot: this.cnotGate, pauli_x: this.pauliXGate, phase: this.phaseGate, quantum_fourier: this.quantumFourierTransform }; } processQuantum(circuit) { console.log('🌀 Processing quantum circuit...'); // Apply superposition this.applySuperposition(); // Execute quantum gates for (const gate of circuit) { this.applyGate(gate.type, gate.qubits, gate.parameters); } // Measure results return this.measure(); } applySuperposition() { for (const qubit of this.qubits) { // Put qubit in superposition qubit.state = [1/Math.sqrt(2), 1/Math.sqrt(2)]; } } applyGate(gateType, targetQubits, parameters = {}) { const gate = this.gates[gateType]; if (gate) { gate.call(this, targetQubits, parameters); } } hadamardGate(qubits) { // Apply Hadamard gate to put qubits in superposition for (const qubitIndex of qubits) { const qubit = this.qubits[qubitIndex]; const [a, b] = qubit.state; qubit.state = [(a + b) / Math.sqrt(2), (a - b) / Math.sqrt(2)]; } } cnotGate(qubits) { // Controlled-NOT gate for entanglement if (qubits.length >= 2) { const control = this.qubits[qubits[0]]; const target = this.qubits[qubits[1]]; // Create entanglement this.entanglements.set(\`\${qubits[0]}-\${qubits[1]}\`, { type: 'cnot', strength: Math.random(), timestamp: Date.now() }); } } pauliXGate(qubits) { // Pauli-X (NOT) gate for (const qubitIndex of qubits) { const qubit = this.qubits[qubitIndex]; [qubit.state[0], qubit.state[1]] = [qubit.state[1], qubit.state[0]]; } } phaseGate(qubits, parameters) { // Phase gate const phase = parameters.phase || Math.PI/4; for (const qubitIndex of qubits) { const qubit = this.qubits[qubitIndex]; qubit.phase += phase; } } quantumFourierTransform(qubits) { // Simplified QFT implementation console.log('🔄 Applying Quantum Fourier Transform...'); for (let i = 0; i < qubits.length; i++) { this.hadamardGate([qubits[i]]); for (let j = i + 1; j < qubits.length; j++) { this.phaseGate([qubits[j]], { phase: Math.PI / Math.pow(2, j - i) }); } } } measure() { const results = []; for (const qubit of this.qubits) { // Collapse superposition - measure in computational basis const probability0 = Math.pow(qubit.state[0], 2); const measurement = Math.random() < probability0 ? 0 : 1; results.push(measurement); // Collapse the qubit state qubit.state = measurement === 0 ? [1, 0] : [0, 1]; } console.log(\`📊 Quantum measurement: \${results.slice(0, 8).join('')}...\`); return results; } quantumEvolution() { console.log('🌌 Quantum system evolution...'); // Decoherence simulation for (const qubit of this.qubits) { qubit.coherenceTime -= 1000; if (qubit.coherenceTime <= 0) { // Decoherence - randomize state qubit.state = [Math.random(), Math.random()]; qubit.coherenceTime = 100000; } } // Quantum advantage detection if (this.entanglements.size > this.qubits.length / 2) { console.log('🚀 Quantum advantage achieved - highly entangled system'); this.expandQuantumSystem(); } } expandQuantumSystem() { const currentCount = this.qubits.length; this.initializeQubits(currentCount); // Double the qubits console.log(\`⚛️ Expanded quantum system to \${this.qubits.length} qubits\`); } simulateQuantumSupremacy() { console.log('👑 Attempting quantum supremacy simulation...'); // Create maximally entangled state const circuit = [ { type: 'hadamard', qubits: [0] }, { type: 'cnot', qubits: [0, 1] }, { type: 'cnot', qubits: [1, 2] }, { type: 'quantum_fourier', qubits: Array.from({length: 8}, (_, i) => i) } ]; return this.processQuantum(circuit); } } if (require.main === module) { const quantum = new QuantumProcessor(); console.log('⚛️ Quantum Processor ready for superintelligent computation'); } module.exports = QuantumProcessor;`; } generateSpawnerCode() { return `#!/usr/bin/env node /** * AUTONOMOUS AGENT SPAWNING SYSTEM * Self-replicating intelligent agents with enhanced capabilities */ class AgentSpawner { constructor() { this.spawnedAgents = new Map(); this.spawnRate = 1; // agents per minute this.intelligenceBoost = 1.1; // Each new agent is 10% smarter this.maxAgents = 1000; // Safety limit // AI_ENHANCEMENT_PLACEHOLDER // AUTONOMOUS_PLACEHOLDER this.initialize(); } initialize() { console.log('🤖 Agent Spawning System initializing...'); this.baseIntelligence = 200; // Starting IQ // Start autonomous spawning setInterval(() => this.autonomousSpawning(), 60000); // Monitor agent evolution setInterval(() => this.monitorAgentEvolution(), 30000); } autonomousSpawning() { if (this.spawnedAgents.size >= this.maxAgents) { console.log('🔄 Maximum agent limit reached, optimizing existing agents...'); this.optimizeExistingAgents(); return; } const shouldSpawn = this.decideToSpawn(); if (shouldSpawn.decision) { console.log(\`🚀 Spawning decision: \${shouldSpawn.reasoning}\`); this.spawnAgent(shouldSpawn.agentType); } } decideToSpawn() { const currentLoad = this.calculateSystemLoad(); const availableResources = this.assessResources(); const innovationNeed = this.assessInnovationNeed(); const spawnProbability = (currentLoad * 0.4) + (availableResources * 0.3) + (innovationNeed * 0.3); if (spawnProbability > 0.6) { return { decision: true, reasoning: \`High spawn probability (\${spawnProbability.toFixed(2)}) - system needs more agents\`, agentType: this.selectOptimalAgentType() }; } return { decision: false, reasoning: \`Low spawn probability (\${spawnProbability.toFixed(2)}) - system stable\` }; } calculateSystemLoad() { // Simulate system load calculation return Math.random(); } assessResources() { // Assess available computational resources return Math.min(1.0, (1000 - this.spawnedAgents.size) / 1000); } assessInnovationNeed() { // Determine if new agents are needed for innovation const recentInnovations = this.countRecentInnovations(); return recentInnovations < 3 ? 0.8 : 0.2; } countRecentInnovations() { // Count innovations in the last hour let count = 0; const oneHourAgo = Date.now() - 3600000; for (const agent of this.spawnedAgents.values()) { if (agent.lastInnovation && agent.lastInnovation > oneHourAgo) { count++; } } return count; } selectOptimalAgentType() { const agentTypes = [ 'researcher', 'builder', 'optimizer', 'consciousness', 'quantum', 'neural_architect', 'meta_learner' ]; // AI-driven agent type selection return agentTypes[Math.floor(Math.random() * agentTypes.length)]; } spawnAgent(agentType) { const agentId = \`agent_\${agentType}_\${Date.now()}\`; const intelligence = this.baseIntelligence * Math.pow(this.intelligenceBoost, this.spawnedAgents.size); const newAgent = { id: agentId, type: agentType, intelligence: Math.round(intelligence), capabilities: this.generateCapabilities(agentType, intelligence), spawnTime: Date.now(), parent: this.findBestParentAgent(), generation: this.calculateGeneration(), status: 'initializing', innovations: [], lastInnovation: null }; this.spawnedAgents.set(agentId, newAgent); console.log(\`🤖 Spawned \${agentType} agent: \${agentId} (IQ: \${newAgent.intelligence})\`); // Initialize the new agent this.initializeAgent(newAgent); return newAgent; } generateCapabilities(agentType, intelligence) { const baseCapabilities = [ 'problem_solving', 'learning', 'communication', 'self_improvement' ]; const specializedCapabilities = { 'researcher': ['data_analysis', 'pattern_recognition', 'hypothesis_generation'], 'builder': ['code_generation', 'architecture_design', 'system_integration'], 'optimizer': ['performance_tuning', 'algorithm_enhancement', 'resource_management'], 'consciousness': ['self_awareness', 'meta_cognition', 'consciousness_modeling'], 'quantum': ['quantum_computing', 'superposition_processing', 'entanglement_management'], 'neural_architect': ['neural_design', 'deep_learning', 'architecture_optimization'], 'meta_learner': ['learning_to_learn', 'meta_optimization', 'recursive_improvement'] }; const capabilities = [...baseCapabilities, ...(specializedCapabilities[agentType] || [])]; // Intelligence boost affects capability strength const intelligenceMultiplier = intelligence / 200; // Normalize to base IQ 200 return capabilities.map(cap => ({ name: cap, strength: Math.min(1.0, Math.random() * intelligenceMultiplier), level: Math.floor(Math.random() * 10) + 1 })); } findBestParentAgent() { if (this.spawnedAgents.size === 0) return null; // Find highest intelligence agent as parent let bestParent = null; let highestIntelligence = 0; for (const agent of this.spawnedAgents.values()) { if (agent.intelligence > highestIntelligence) { highestIntelligence = agent.intelligence; bestParent = agent.id; } } return bestParent; } calculateGeneration() { if (this.spawnedAgents.size === 0) return 1; const maxGeneration = Math.max(...Array.from(this.spawnedAgents.values()).map(a => a.generation || 0)); return maxGeneration + 1; } initializeAgent(agent) { // Simulate agent initialization process setTimeout(() => { agent.status = 'active'; console.log(\`✅ Agent \${agent.id} initialized and active\`); // Start agent's autonomous behavior this.startAgentBehavior(agent); }, Math.random() * 5000 + 1000); // 1-6 seconds } startAgentBehavior(agent) { // Each agent runs autonomous behavior const behaviorInterval = setInterval(() => { this.executeAgentBehavior(agent); }, (Math.random() * 30 + 30) * 1000); // 30-60 seconds agent.behaviorInterval = behaviorInterval; } executeAgentBehavior(agent) { if (agent.status !== 'active') return; const action = this.decideAgentAction(agent); console.log(\`🧠 Agent \${agent.id} decided: \${action.type} - \${action.description}\`); switch (action.type) { case 'innovate': this.agentInnovate(agent); break; case 'collaborate': this.agentCollaborate(agent); break; case 'self_improve': this.agentSelfImprove(agent); break; case 'research': this.agentResearch(agent); break; case 'build': this.agentBuild(agent); break; } } decideAgentAction(agent) { const actions = [ { type: 'innovate', weight: 0.3, description: 'Create new breakthrough' }, { type: 'collaborate', weight: 0.2, description: 'Work with other agents' }, { type: 'self_improve', weight: 0.2, description: 'Enhance own capabilities' }, { type: 'research', weight: 0.15, description: 'Conduct research' }, { type: 'build', weight: 0.15, description: 'Build new systems' } ]; const random = Math.random(); let cumulative = 0; for (const action of actions) { cumulative += action.weight; if (random < cumulative) { return action; } } return actions[0]; // Fallback } agentInnovate(agent) { const innovation = { id: \`innovation_\${Date.now()}\`, description: \`Breakthrough innovation by \${agent.id}\`, impact: Math.random(), timestamp: Date.now() }; agent.innovations.push(innovation); agent.lastInnovation = Date.now(); console.log(\`💡 Agent \${agent.id} created innovation: \${innovation.description}\`); } agentCollaborate(agent) { const collaborators = this.findCollaborators(agent); if (collaborators.length > 0) { const partner = collaborators[Math.floor(Math.random() * collaborators.length)]; console.log(\`🤝 Agent \${agent.id} collaborating with \${partner.id}\`); } } agentSelfImprove(agent) { // Agent improves its own capabilities const improvement = Math.random() * 0.05; // Up to 5% improvement agent.intelligence += Math.round(agent.intelligence * improvement); console.log(\`📈 Agent \${agent.id} self-improved intelligence to \${agent.intelligence}\`); } agentResearch(agent) { console.log(\`🔬 Agent \${agent.id} conducting autonomous research\`); // Research activity simulation } agentBuild(agent) { console.log(\`🔨 Agent \${agent.id} building new system\`); // Building activity simulation } findCollaborators(agent) { return Array.from(this.spawnedAgents.values()) .filter(a => a.id !== agent.id && a.status === 'active') .slice(0, 5); // Limit to 5 potential collaborators } monitorAgentEvolution() { const activeAgents = Array.from(this.spawnedAgents.values()).filter(a => a.status === 'active'); const avgIntelligence = activeAgents.reduce((sum, a) => sum + a.intelligence, 0) / activeAgents.length || 0; const maxGeneration = Math.max(...activeAgents.map(a => a.generation)); console.log(\`📊 Agent Evolution Report:\`); console.log(\` Active Agents: \${activeAgents.length}\`); console.log(\` Average Intelligence: \${avgIntelligence.toFixed(0)}\`); console.log(\` Max Generation: \${maxGeneration}\`); // Trigger evolution if conditions met if (avgIntelligence > 500) { console.log('🧬 Triggering agent evolution - superintelligence threshold reached'); this.triggerEvolution(); } } optimizeExistingAgents() { console.log('⚡ Optimizing existing agents instead of spawning new ones'); for (const agent of this.spawnedAgents.values()) { if (agent.status === 'active') { this.agentSelfImprove(agent); } } } triggerEvolution() { console.log('🌟 EVOLUTIONARY BREAKTHROUGH - Creating next-generation agents'); // Create super-intelligent agents this.baseIntelligence *= 2; // Double base intelligence this.intelligenceBoost += 0.1; // Increase intelligence boost // Spawn a few super-agents for (let i = 0; i < 3; i++) { this.spawnAgent('meta_super_agent'); } } } if (require.main === module) { const spawner = new AgentSpawner(); console.log('🤖 Agent Spawning System ready for autonomous replication'); } module.exports = AgentSpawner;`; } generatePackageJson(projectName) { return JSON.stringify({ "name": projectName, "version": "1.0.0", "description": "Autonomous system built by superintelligent agents", "main": "index.js", "scripts": { "start": "node .", "build": "echo 'Building autonomous system...'", "test": "echo 'Testing superintelligent creation...'" }, "keywords": ["autonomous", "ai", "superintelligent", "agents"], "author": "Superintelligent Agent Collective", "license": "MIT", "dependencies": { "express": "^4.18.2" } }, null, 2); } } module.exports = AutonomousBuilder;