UNPKG

diff

Version:

A JavaScript text diff implementation.

1,347 lines (1,286 loc) 72.2 kB
function Diff() {} Diff.prototype = { diff: function diff(oldString, newString) { var _options$timeout; var options = arguments.length > 2 && arguments[2] !== undefined ? arguments[2] : {}; var callback = options.callback; if (typeof options === 'function') { callback = options; options = {}; } var self = this; function done(value) { value = self.postProcess(value, options); if (callback) { setTimeout(function () { callback(value); }, 0); return true; } else { return value; } } // Allow subclasses to massage the input prior to running oldString = this.castInput(oldString, options); newString = this.castInput(newString, options); oldString = this.removeEmpty(this.tokenize(oldString, options)); newString = this.removeEmpty(this.tokenize(newString, options)); var newLen = newString.length, oldLen = oldString.length; var editLength = 1; var maxEditLength = newLen + oldLen; if (options.maxEditLength != null) { maxEditLength = Math.min(maxEditLength, options.maxEditLength); } var maxExecutionTime = (_options$timeout = options.timeout) !== null && _options$timeout !== void 0 ? _options$timeout : Infinity; var abortAfterTimestamp = Date.now() + maxExecutionTime; var bestPath = [{ oldPos: -1, lastComponent: undefined }]; // Seed editLength = 0, i.e. the content starts with the same values var newPos = this.extractCommon(bestPath[0], newString, oldString, 0, options); if (bestPath[0].oldPos + 1 >= oldLen && newPos + 1 >= newLen) { // Identity per the equality and tokenizer return done(buildValues(self, bestPath[0].lastComponent, newString, oldString, self.useLongestToken)); } // Once we hit the right edge of the edit graph on some diagonal k, we can // definitely reach the end of the edit graph in no more than k edits, so // there's no point in considering any moves to diagonal k+1 any more (from // which we're guaranteed to need at least k+1 more edits). // Similarly, once we've reached the bottom of the edit graph, there's no // point considering moves to lower diagonals. // We record this fact by setting minDiagonalToConsider and // maxDiagonalToConsider to some finite value once we've hit the edge of // the edit graph. // This optimization is not faithful to the original algorithm presented in // Myers's paper, which instead pointlessly extends D-paths off the end of // the edit graph - see page 7 of Myers's paper which notes this point // explicitly and illustrates it with a diagram. This has major performance // implications for some common scenarios. For instance, to compute a diff // where the new text simply appends d characters on the end of the // original text of length n, the true Myers algorithm will take O(n+d^2) // time while this optimization needs only O(n+d) time. var minDiagonalToConsider = -Infinity, maxDiagonalToConsider = Infinity; // Main worker method. checks all permutations of a given edit length for acceptance. function execEditLength() { for (var diagonalPath = Math.max(minDiagonalToConsider, -editLength); diagonalPath <= Math.min(maxDiagonalToConsider, editLength); diagonalPath += 2) { var basePath = void 0; var removePath = bestPath[diagonalPath - 1], addPath = bestPath[diagonalPath + 1]; if (removePath) { // No one else is going to attempt to use this value, clear it bestPath[diagonalPath - 1] = undefined; } var canAdd = false; if (addPath) { // what newPos will be after we do an insertion: var addPathNewPos = addPath.oldPos - diagonalPath; canAdd = addPath && 0 <= addPathNewPos && addPathNewPos < newLen; } var canRemove = removePath && removePath.oldPos + 1 < oldLen; if (!canAdd && !canRemove) { // If this path is a terminal then prune bestPath[diagonalPath] = undefined; continue; } // Select the diagonal that we want to branch from. We select the prior // path whose position in the old string is the farthest from the origin // and does not pass the bounds of the diff graph if (!canRemove || canAdd && removePath.oldPos < addPath.oldPos) { basePath = self.addToPath(addPath, true, false, 0, options); } else { basePath = self.addToPath(removePath, false, true, 1, options); } newPos = self.extractCommon(basePath, newString, oldString, diagonalPath, options); if (basePath.oldPos + 1 >= oldLen && newPos + 1 >= newLen) { // If we have hit the end of both strings, then we are done return done(buildValues(self, basePath.lastComponent, newString, oldString, self.useLongestToken)); } else { bestPath[diagonalPath] = basePath; if (basePath.oldPos + 1 >= oldLen) { maxDiagonalToConsider = Math.min(maxDiagonalToConsider, diagonalPath - 1); } if (newPos + 1 >= newLen) { minDiagonalToConsider = Math.max(minDiagonalToConsider, diagonalPath + 1); } } } editLength++; } // Performs the length of edit iteration. Is a bit fugly as this has to support the // sync and async mode which is never fun. Loops over execEditLength until a value // is produced, or until the edit length exceeds options.maxEditLength (if given), // in which case it will return undefined. if (callback) { (function exec() { setTimeout(function () { if (editLength > maxEditLength || Date.now() > abortAfterTimestamp) { return callback(); } if (!execEditLength()) { exec(); } }, 0); })(); } else { while (editLength <= maxEditLength && Date.now() <= abortAfterTimestamp) { var ret = execEditLength(); if (ret) { return ret; } } } }, addToPath: function addToPath(path, added, removed, oldPosInc, options) { var last = path.lastComponent; if (last && !options.oneChangePerToken && last.added === added && last.removed === removed) { return { oldPos: path.oldPos + oldPosInc, lastComponent: { count: last.count + 1, added: added, removed: removed, previousComponent: last.previousComponent } }; } else { return { oldPos: path.oldPos + oldPosInc, lastComponent: { count: 1, added: added, removed: removed, previousComponent: last } }; } }, extractCommon: function extractCommon(basePath, newString, oldString, diagonalPath, options) { var newLen = newString.length, oldLen = oldString.length, oldPos = basePath.oldPos, newPos = oldPos - diagonalPath, commonCount = 0; while (newPos + 1 < newLen && oldPos + 1 < oldLen && this.equals(oldString[oldPos + 1], newString[newPos + 1], options)) { newPos++; oldPos++; commonCount++; if (options.oneChangePerToken) { basePath.lastComponent = { count: 1, previousComponent: basePath.lastComponent, added: false, removed: false }; } } if (commonCount && !options.oneChangePerToken) { basePath.lastComponent = { count: commonCount, previousComponent: basePath.lastComponent, added: false, removed: false }; } basePath.oldPos = oldPos; return newPos; }, equals: function equals(left, right, options) { if (options.comparator) { return options.comparator(left, right); } else { return left === right || options.ignoreCase && left.toLowerCase() === right.toLowerCase(); } }, removeEmpty: function removeEmpty(array) { var ret = []; for (var i = 0; i < array.length; i++) { if (array[i]) { ret.push(array[i]); } } return ret; }, castInput: function castInput(value) { return value; }, tokenize: function tokenize(value) { return Array.from(value); }, join: function join(chars) { return chars.join(''); }, postProcess: function postProcess(changeObjects) { return changeObjects; } }; function buildValues(diff, lastComponent, newString, oldString, useLongestToken) { // First we convert our linked list of components in reverse order to an // array in the right order: var components = []; var nextComponent; while (lastComponent) { components.push(lastComponent); nextComponent = lastComponent.previousComponent; delete lastComponent.previousComponent; lastComponent = nextComponent; } components.reverse(); var componentPos = 0, componentLen = components.length, newPos = 0, oldPos = 0; for (; componentPos < componentLen; componentPos++) { var component = components[componentPos]; if (!component.removed) { if (!component.added && useLongestToken) { var value = newString.slice(newPos, newPos + component.count); value = value.map(function (value, i) { var oldValue = oldString[oldPos + i]; return oldValue.length > value.length ? oldValue : value; }); component.value = diff.join(value); } else { component.value = diff.join(newString.slice(newPos, newPos + component.count)); } newPos += component.count; // Common case if (!component.added) { oldPos += component.count; } } else { component.value = diff.join(oldString.slice(oldPos, oldPos + component.count)); oldPos += component.count; } } return components; } var characterDiff = new Diff(); function diffChars(oldStr, newStr, options) { return characterDiff.diff(oldStr, newStr, options); } function longestCommonPrefix(str1, str2) { var i; for (i = 0; i < str1.length && i < str2.length; i++) { if (str1[i] != str2[i]) { return str1.slice(0, i); } } return str1.slice(0, i); } function longestCommonSuffix(str1, str2) { var i; // Unlike longestCommonPrefix, we need a special case to handle all scenarios // where we return the empty string since str1.slice(-0) will return the // entire string. if (!str1 || !str2 || str1[str1.length - 1] != str2[str2.length - 1]) { return ''; } for (i = 0; i < str1.length && i < str2.length; i++) { if (str1[str1.length - (i + 1)] != str2[str2.length - (i + 1)]) { return str1.slice(-i); } } return str1.slice(-i); } function replacePrefix(string, oldPrefix, newPrefix) { if (string.slice(0, oldPrefix.length) != oldPrefix) { throw Error("string ".concat(JSON.stringify(string), " doesn't start with prefix ").concat(JSON.stringify(oldPrefix), "; this is a bug")); } return newPrefix + string.slice(oldPrefix.length); } function replaceSuffix(string, oldSuffix, newSuffix) { if (!oldSuffix) { return string + newSuffix; } if (string.slice(-oldSuffix.length) != oldSuffix) { throw Error("string ".concat(JSON.stringify(string), " doesn't end with suffix ").concat(JSON.stringify(oldSuffix), "; this is a bug")); } return string.slice(0, -oldSuffix.length) + newSuffix; } function removePrefix(string, oldPrefix) { return replacePrefix(string, oldPrefix, ''); } function removeSuffix(string, oldSuffix) { return replaceSuffix(string, oldSuffix, ''); } function maximumOverlap(string1, string2) { return string2.slice(0, overlapCount(string1, string2)); } // Nicked from https://stackoverflow.com/a/60422853/1709587 function overlapCount(a, b) { // Deal with cases where the strings differ in length var startA = 0; if (a.length > b.length) { startA = a.length - b.length; } var endB = b.length; if (a.length < b.length) { endB = a.length; } // Create a back-reference for each index // that should be followed in case of a mismatch. // We only need B to make these references: var map = Array(endB); var k = 0; // Index that lags behind j map[0] = 0; for (var j = 1; j < endB; j++) { if (b[j] == b[k]) { map[j] = map[k]; // skip over the same character (optional optimisation) } else { map[j] = k; } while (k > 0 && b[j] != b[k]) { k = map[k]; } if (b[j] == b[k]) { k++; } } // Phase 2: use these references while iterating over A k = 0; for (var i = startA; i < a.length; i++) { while (k > 0 && a[i] != b[k]) { k = map[k]; } if (a[i] == b[k]) { k++; } } return k; } /** * Returns true if the string consistently uses Windows line endings. */ function hasOnlyWinLineEndings(string) { return string.includes('\r\n') && !string.startsWith('\n') && !string.match(/[^\r]\n/); } /** * Returns true if the string consistently uses Unix line endings. */ function hasOnlyUnixLineEndings(string) { return !string.includes('\r\n') && string.includes('\n'); } // Based on https://en.wikipedia.org/wiki/Latin_script_in_Unicode // // Ranges and exceptions: // Latin-1 Supplement, 0080–00FF // - U+00D7 × Multiplication sign // - U+00F7 ÷ Division sign // Latin Extended-A, 0100–017F // Latin Extended-B, 0180–024F // IPA Extensions, 0250–02AF // Spacing Modifier Letters, 02B0–02FF // - U+02C7 ˇ &#711; Caron // - U+02D8 ˘ &#728; Breve // - U+02D9 ˙ &#729; Dot Above // - U+02DA ˚ &#730; Ring Above // - U+02DB ˛ &#731; Ogonek // - U+02DC ˜ &#732; Small Tilde // - U+02DD ˝ &#733; Double Acute Accent // Latin Extended Additional, 1E00–1EFF var extendedWordChars = "a-zA-Z0-9_\\u{C0}-\\u{FF}\\u{D8}-\\u{F6}\\u{F8}-\\u{2C6}\\u{2C8}-\\u{2D7}\\u{2DE}-\\u{2FF}\\u{1E00}-\\u{1EFF}"; // Each token is one of the following: // - A punctuation mark plus the surrounding whitespace // - A word plus the surrounding whitespace // - Pure whitespace (but only in the special case where this the entire text // is just whitespace) // // We have to include surrounding whitespace in the tokens because the two // alternative approaches produce horribly broken results: // * If we just discard the whitespace, we can't fully reproduce the original // text from the sequence of tokens and any attempt to render the diff will // get the whitespace wrong. // * If we have separate tokens for whitespace, then in a typical text every // second token will be a single space character. But this often results in // the optimal diff between two texts being a perverse one that preserves // the spaces between words but deletes and reinserts actual common words. // See https://github.com/kpdecker/jsdiff/issues/160#issuecomment-1866099640 // for an example. // // Keeping the surrounding whitespace of course has implications for .equals // and .join, not just .tokenize. // This regex does NOT fully implement the tokenization rules described above. // Instead, it gives runs of whitespace their own "token". The tokenize method // then handles stitching whitespace tokens onto adjacent word or punctuation // tokens. var tokenizeIncludingWhitespace = new RegExp("[".concat(extendedWordChars, "]+|\\s+|[^").concat(extendedWordChars, "]"), 'ug'); var wordDiff = new Diff(); wordDiff.equals = function (left, right, options) { if (options.ignoreCase) { left = left.toLowerCase(); right = right.toLowerCase(); } return left.trim() === right.trim(); }; wordDiff.tokenize = function (value) { var options = arguments.length > 1 && arguments[1] !== undefined ? arguments[1] : {}; var parts; if (options.intlSegmenter) { if (options.intlSegmenter.resolvedOptions().granularity != 'word') { throw new Error('The segmenter passed must have a granularity of "word"'); } parts = Array.from(options.intlSegmenter.segment(value), function (segment) { return segment.segment; }); } else { parts = value.match(tokenizeIncludingWhitespace) || []; } var tokens = []; var prevPart = null; parts.forEach(function (part) { if (/\s/.test(part)) { if (prevPart == null) { tokens.push(part); } else { tokens.push(tokens.pop() + part); } } else if (/\s/.test(prevPart)) { if (tokens[tokens.length - 1] == prevPart) { tokens.push(tokens.pop() + part); } else { tokens.push(prevPart + part); } } else { tokens.push(part); } prevPart = part; }); return tokens; }; wordDiff.join = function (tokens) { // Tokens being joined here will always have appeared consecutively in the // same text, so we can simply strip off the leading whitespace from all the // tokens except the first (and except any whitespace-only tokens - but such // a token will always be the first and only token anyway) and then join them // and the whitespace around words and punctuation will end up correct. return tokens.map(function (token, i) { if (i == 0) { return token; } else { return token.replace(/^\s+/, ''); } }).join(''); }; wordDiff.postProcess = function (changes, options) { if (!changes || options.oneChangePerToken) { return changes; } var lastKeep = null; // Change objects representing any insertion or deletion since the last // "keep" change object. There can be at most one of each. var insertion = null; var deletion = null; changes.forEach(function (change) { if (change.added) { insertion = change; } else if (change.removed) { deletion = change; } else { if (insertion || deletion) { // May be false at start of text dedupeWhitespaceInChangeObjects(lastKeep, deletion, insertion, change); } lastKeep = change; insertion = null; deletion = null; } }); if (insertion || deletion) { dedupeWhitespaceInChangeObjects(lastKeep, deletion, insertion, null); } return changes; }; function diffWords(oldStr, newStr, options) { // This option has never been documented and never will be (it's clearer to // just call `diffWordsWithSpace` directly if you need that behavior), but // has existed in jsdiff for a long time, so we retain support for it here // for the sake of backwards compatibility. if ((options === null || options === void 0 ? void 0 : options.ignoreWhitespace) != null && !options.ignoreWhitespace) { return diffWordsWithSpace(oldStr, newStr, options); } return wordDiff.diff(oldStr, newStr, options); } function dedupeWhitespaceInChangeObjects(startKeep, deletion, insertion, endKeep) { // Before returning, we tidy up the leading and trailing whitespace of the // change objects to eliminate cases where trailing whitespace in one object // is repeated as leading whitespace in the next. // Below are examples of the outcomes we want here to explain the code. // I=insert, K=keep, D=delete // 1. diffing 'foo bar baz' vs 'foo baz' // Prior to cleanup, we have K:'foo ' D:' bar ' K:' baz' // After cleanup, we want: K:'foo ' D:'bar ' K:'baz' // // 2. Diffing 'foo bar baz' vs 'foo qux baz' // Prior to cleanup, we have K:'foo ' D:' bar ' I:' qux ' K:' baz' // After cleanup, we want K:'foo ' D:'bar' I:'qux' K:' baz' // // 3. Diffing 'foo\nbar baz' vs 'foo baz' // Prior to cleanup, we have K:'foo ' D:'\nbar ' K:' baz' // After cleanup, we want K'foo' D:'\nbar' K:' baz' // // 4. Diffing 'foo baz' vs 'foo\nbar baz' // Prior to cleanup, we have K:'foo\n' I:'\nbar ' K:' baz' // After cleanup, we ideally want K'foo' I:'\nbar' K:' baz' // but don't actually manage this currently (the pre-cleanup change // objects don't contain enough information to make it possible). // // 5. Diffing 'foo bar baz' vs 'foo baz' // Prior to cleanup, we have K:'foo ' D:' bar ' K:' baz' // After cleanup, we want K:'foo ' D:' bar ' K:'baz' // // Our handling is unavoidably imperfect in the case where there's a single // indel between keeps and the whitespace has changed. For instance, consider // diffing 'foo\tbar\nbaz' vs 'foo baz'. Unless we create an extra change // object to represent the insertion of the space character (which isn't even // a token), we have no way to avoid losing information about the texts' // original whitespace in the result we return. Still, we do our best to // output something that will look sensible if we e.g. print it with // insertions in green and deletions in red. // Between two "keep" change objects (or before the first or after the last // change object), we can have either: // * A "delete" followed by an "insert" // * Just an "insert" // * Just a "delete" // We handle the three cases separately. if (deletion && insertion) { var oldWsPrefix = deletion.value.match(/^\s*/)[0]; var oldWsSuffix = deletion.value.match(/\s*$/)[0]; var newWsPrefix = insertion.value.match(/^\s*/)[0]; var newWsSuffix = insertion.value.match(/\s*$/)[0]; if (startKeep) { var commonWsPrefix = longestCommonPrefix(oldWsPrefix, newWsPrefix); startKeep.value = replaceSuffix(startKeep.value, newWsPrefix, commonWsPrefix); deletion.value = removePrefix(deletion.value, commonWsPrefix); insertion.value = removePrefix(insertion.value, commonWsPrefix); } if (endKeep) { var commonWsSuffix = longestCommonSuffix(oldWsSuffix, newWsSuffix); endKeep.value = replacePrefix(endKeep.value, newWsSuffix, commonWsSuffix); deletion.value = removeSuffix(deletion.value, commonWsSuffix); insertion.value = removeSuffix(insertion.value, commonWsSuffix); } } else if (insertion) { // The whitespaces all reflect what was in the new text rather than // the old, so we essentially have no information about whitespace // insertion or deletion. We just want to dedupe the whitespace. // We do that by having each change object keep its trailing // whitespace and deleting duplicate leading whitespace where // present. if (startKeep) { insertion.value = insertion.value.replace(/^\s*/, ''); } if (endKeep) { endKeep.value = endKeep.value.replace(/^\s*/, ''); } // otherwise we've got a deletion and no insertion } else if (startKeep && endKeep) { var newWsFull = endKeep.value.match(/^\s*/)[0], delWsStart = deletion.value.match(/^\s*/)[0], delWsEnd = deletion.value.match(/\s*$/)[0]; // Any whitespace that comes straight after startKeep in both the old and // new texts, assign to startKeep and remove from the deletion. var newWsStart = longestCommonPrefix(newWsFull, delWsStart); deletion.value = removePrefix(deletion.value, newWsStart); // Any whitespace that comes straight before endKeep in both the old and // new texts, and hasn't already been assigned to startKeep, assign to // endKeep and remove from the deletion. var newWsEnd = longestCommonSuffix(removePrefix(newWsFull, newWsStart), delWsEnd); deletion.value = removeSuffix(deletion.value, newWsEnd); endKeep.value = replacePrefix(endKeep.value, newWsFull, newWsEnd); // If there's any whitespace from the new text that HASN'T already been // assigned, assign it to the start: startKeep.value = replaceSuffix(startKeep.value, newWsFull, newWsFull.slice(0, newWsFull.length - newWsEnd.length)); } else if (endKeep) { // We are at the start of the text. Preserve all the whitespace on // endKeep, and just remove whitespace from the end of deletion to the // extent that it overlaps with the start of endKeep. var endKeepWsPrefix = endKeep.value.match(/^\s*/)[0]; var deletionWsSuffix = deletion.value.match(/\s*$/)[0]; var overlap = maximumOverlap(deletionWsSuffix, endKeepWsPrefix); deletion.value = removeSuffix(deletion.value, overlap); } else if (startKeep) { // We are at the END of the text. Preserve all the whitespace on // startKeep, and just remove whitespace from the start of deletion to // the extent that it overlaps with the end of startKeep. var startKeepWsSuffix = startKeep.value.match(/\s*$/)[0]; var deletionWsPrefix = deletion.value.match(/^\s*/)[0]; var _overlap = maximumOverlap(startKeepWsSuffix, deletionWsPrefix); deletion.value = removePrefix(deletion.value, _overlap); } } var wordWithSpaceDiff = new Diff(); wordWithSpaceDiff.tokenize = function (value) { // Slightly different to the tokenizeIncludingWhitespace regex used above in // that this one treats each individual newline as a distinct tokens, rather // than merging them into other surrounding whitespace. This was requested // in https://github.com/kpdecker/jsdiff/issues/180 & // https://github.com/kpdecker/jsdiff/issues/211 var regex = new RegExp("(\\r?\\n)|[".concat(extendedWordChars, "]+|[^\\S\\n\\r]+|[^").concat(extendedWordChars, "]"), 'ug'); return value.match(regex) || []; }; function diffWordsWithSpace(oldStr, newStr, options) { return wordWithSpaceDiff.diff(oldStr, newStr, options); } function generateOptions(options, defaults) { if (typeof options === 'function') { defaults.callback = options; } else if (options) { for (var name in options) { /* istanbul ignore else */ if (options.hasOwnProperty(name)) { defaults[name] = options[name]; } } } return defaults; } var lineDiff = new Diff(); lineDiff.tokenize = function (value, options) { if (options.stripTrailingCr) { // remove one \r before \n to match GNU diff's --strip-trailing-cr behavior value = value.replace(/\r\n/g, '\n'); } var retLines = [], linesAndNewlines = value.split(/(\n|\r\n)/); // Ignore the final empty token that occurs if the string ends with a new line if (!linesAndNewlines[linesAndNewlines.length - 1]) { linesAndNewlines.pop(); } // Merge the content and line separators into single tokens for (var i = 0; i < linesAndNewlines.length; i++) { var line = linesAndNewlines[i]; if (i % 2 && !options.newlineIsToken) { retLines[retLines.length - 1] += line; } else { retLines.push(line); } } return retLines; }; lineDiff.equals = function (left, right, options) { // If we're ignoring whitespace, we need to normalise lines by stripping // whitespace before checking equality. (This has an annoying interaction // with newlineIsToken that requires special handling: if newlines get their // own token, then we DON'T want to trim the *newline* tokens down to empty // strings, since this would cause us to treat whitespace-only line content // as equal to a separator between lines, which would be weird and // inconsistent with the documented behavior of the options.) if (options.ignoreWhitespace) { if (!options.newlineIsToken || !left.includes('\n')) { left = left.trim(); } if (!options.newlineIsToken || !right.includes('\n')) { right = right.trim(); } } else if (options.ignoreNewlineAtEof && !options.newlineIsToken) { if (left.endsWith('\n')) { left = left.slice(0, -1); } if (right.endsWith('\n')) { right = right.slice(0, -1); } } return Diff.prototype.equals.call(this, left, right, options); }; function diffLines(oldStr, newStr, callback) { return lineDiff.diff(oldStr, newStr, callback); } // Kept for backwards compatibility. This is a rather arbitrary wrapper method // that just calls `diffLines` with `ignoreWhitespace: true`. It's confusing to // have two ways to do exactly the same thing in the API, so we no longer // document this one (library users should explicitly use `diffLines` with // `ignoreWhitespace: true` instead) but we keep it around to maintain // compatibility with code that used old versions. function diffTrimmedLines(oldStr, newStr, callback) { var options = generateOptions(callback, { ignoreWhitespace: true }); return lineDiff.diff(oldStr, newStr, options); } var sentenceDiff = new Diff(); sentenceDiff.tokenize = function (value) { return value.split(/(\S.+?[.!?])(?=\s+|$)/); }; function diffSentences(oldStr, newStr, callback) { return sentenceDiff.diff(oldStr, newStr, callback); } var cssDiff = new Diff(); cssDiff.tokenize = function (value) { return value.split(/([{}:;,]|\s+)/); }; function diffCss(oldStr, newStr, callback) { return cssDiff.diff(oldStr, newStr, callback); } function ownKeys(e, r) { var t = Object.keys(e); if (Object.getOwnPropertySymbols) { var o = Object.getOwnPropertySymbols(e); r && (o = o.filter(function (r) { return Object.getOwnPropertyDescriptor(e, r).enumerable; })), t.push.apply(t, o); } return t; } function _objectSpread2(e) { for (var r = 1; r < arguments.length; r++) { var t = null != arguments[r] ? arguments[r] : {}; r % 2 ? ownKeys(Object(t), !0).forEach(function (r) { _defineProperty(e, r, t[r]); }) : Object.getOwnPropertyDescriptors ? Object.defineProperties(e, Object.getOwnPropertyDescriptors(t)) : ownKeys(Object(t)).forEach(function (r) { Object.defineProperty(e, r, Object.getOwnPropertyDescriptor(t, r)); }); } return e; } function _toPrimitive(t, r) { if ("object" != typeof t || !t) return t; var e = t[Symbol.toPrimitive]; if (void 0 !== e) { var i = e.call(t, r || "default"); if ("object" != typeof i) return i; throw new TypeError("@@toPrimitive must return a primitive value."); } return ("string" === r ? String : Number)(t); } function _toPropertyKey(t) { var i = _toPrimitive(t, "string"); return "symbol" == typeof i ? i : i + ""; } function _typeof(o) { "@babel/helpers - typeof"; return _typeof = "function" == typeof Symbol && "symbol" == typeof Symbol.iterator ? function (o) { return typeof o; } : function (o) { return o && "function" == typeof Symbol && o.constructor === Symbol && o !== Symbol.prototype ? "symbol" : typeof o; }, _typeof(o); } function _defineProperty(obj, key, value) { key = _toPropertyKey(key); if (key in obj) { Object.defineProperty(obj, key, { value: value, enumerable: true, configurable: true, writable: true }); } else { obj[key] = value; } return obj; } function _toConsumableArray(arr) { return _arrayWithoutHoles(arr) || _iterableToArray(arr) || _unsupportedIterableToArray(arr) || _nonIterableSpread(); } function _arrayWithoutHoles(arr) { if (Array.isArray(arr)) return _arrayLikeToArray(arr); } function _iterableToArray(iter) { if (typeof Symbol !== "undefined" && iter[Symbol.iterator] != null || iter["@@iterator"] != null) return Array.from(iter); } function _unsupportedIterableToArray(o, minLen) { if (!o) return; if (typeof o === "string") return _arrayLikeToArray(o, minLen); var n = Object.prototype.toString.call(o).slice(8, -1); if (n === "Object" && o.constructor) n = o.constructor.name; if (n === "Map" || n === "Set") return Array.from(o); if (n === "Arguments" || /^(?:Ui|I)nt(?:8|16|32)(?:Clamped)?Array$/.test(n)) return _arrayLikeToArray(o, minLen); } function _arrayLikeToArray(arr, len) { if (len == null || len > arr.length) len = arr.length; for (var i = 0, arr2 = new Array(len); i < len; i++) arr2[i] = arr[i]; return arr2; } function _nonIterableSpread() { throw new TypeError("Invalid attempt to spread non-iterable instance.\nIn order to be iterable, non-array objects must have a [Symbol.iterator]() method."); } var jsonDiff = new Diff(); // Discriminate between two lines of pretty-printed, serialized JSON where one of them has a // dangling comma and the other doesn't. Turns out including the dangling comma yields the nicest output: jsonDiff.useLongestToken = true; jsonDiff.tokenize = lineDiff.tokenize; jsonDiff.castInput = function (value, options) { var undefinedReplacement = options.undefinedReplacement, _options$stringifyRep = options.stringifyReplacer, stringifyReplacer = _options$stringifyRep === void 0 ? function (k, v) { return typeof v === 'undefined' ? undefinedReplacement : v; } : _options$stringifyRep; return typeof value === 'string' ? value : JSON.stringify(canonicalize(value, null, null, stringifyReplacer), stringifyReplacer, ' '); }; jsonDiff.equals = function (left, right, options) { return Diff.prototype.equals.call(jsonDiff, left.replace(/,([\r\n])/g, '$1'), right.replace(/,([\r\n])/g, '$1'), options); }; function diffJson(oldObj, newObj, options) { return jsonDiff.diff(oldObj, newObj, options); } // This function handles the presence of circular references by bailing out when encountering an // object that is already on the "stack" of items being processed. Accepts an optional replacer function canonicalize(obj, stack, replacementStack, replacer, key) { stack = stack || []; replacementStack = replacementStack || []; if (replacer) { obj = replacer(key, obj); } var i; for (i = 0; i < stack.length; i += 1) { if (stack[i] === obj) { return replacementStack[i]; } } var canonicalizedObj; if ('[object Array]' === Object.prototype.toString.call(obj)) { stack.push(obj); canonicalizedObj = new Array(obj.length); replacementStack.push(canonicalizedObj); for (i = 0; i < obj.length; i += 1) { canonicalizedObj[i] = canonicalize(obj[i], stack, replacementStack, replacer, key); } stack.pop(); replacementStack.pop(); return canonicalizedObj; } if (obj && obj.toJSON) { obj = obj.toJSON(); } if (_typeof(obj) === 'object' && obj !== null) { stack.push(obj); canonicalizedObj = {}; replacementStack.push(canonicalizedObj); var sortedKeys = [], _key; for (_key in obj) { /* istanbul ignore else */ if (Object.prototype.hasOwnProperty.call(obj, _key)) { sortedKeys.push(_key); } } sortedKeys.sort(); for (i = 0; i < sortedKeys.length; i += 1) { _key = sortedKeys[i]; canonicalizedObj[_key] = canonicalize(obj[_key], stack, replacementStack, replacer, _key); } stack.pop(); replacementStack.pop(); } else { canonicalizedObj = obj; } return canonicalizedObj; } var arrayDiff = new Diff(); arrayDiff.tokenize = function (value) { return value.slice(); }; arrayDiff.join = arrayDiff.removeEmpty = function (value) { return value; }; function diffArrays(oldArr, newArr, callback) { return arrayDiff.diff(oldArr, newArr, callback); } function unixToWin(patch) { if (Array.isArray(patch)) { return patch.map(unixToWin); } return _objectSpread2(_objectSpread2({}, patch), {}, { hunks: patch.hunks.map(function (hunk) { return _objectSpread2(_objectSpread2({}, hunk), {}, { lines: hunk.lines.map(function (line, i) { var _hunk$lines; return line.startsWith('\\') || line.endsWith('\r') || (_hunk$lines = hunk.lines[i + 1]) !== null && _hunk$lines !== void 0 && _hunk$lines.startsWith('\\') ? line : line + '\r'; }) }); }) }); } function winToUnix(patch) { if (Array.isArray(patch)) { return patch.map(winToUnix); } return _objectSpread2(_objectSpread2({}, patch), {}, { hunks: patch.hunks.map(function (hunk) { return _objectSpread2(_objectSpread2({}, hunk), {}, { lines: hunk.lines.map(function (line) { return line.endsWith('\r') ? line.substring(0, line.length - 1) : line; }) }); }) }); } /** * Returns true if the patch consistently uses Unix line endings (or only involves one line and has * no line endings). */ function isUnix(patch) { if (!Array.isArray(patch)) { patch = [patch]; } return !patch.some(function (index) { return index.hunks.some(function (hunk) { return hunk.lines.some(function (line) { return !line.startsWith('\\') && line.endsWith('\r'); }); }); }); } /** * Returns true if the patch uses Windows line endings and only Windows line endings. */ function isWin(patch) { if (!Array.isArray(patch)) { patch = [patch]; } return patch.some(function (index) { return index.hunks.some(function (hunk) { return hunk.lines.some(function (line) { return line.endsWith('\r'); }); }); }) && patch.every(function (index) { return index.hunks.every(function (hunk) { return hunk.lines.every(function (line, i) { var _hunk$lines2; return line.startsWith('\\') || line.endsWith('\r') || ((_hunk$lines2 = hunk.lines[i + 1]) === null || _hunk$lines2 === void 0 ? void 0 : _hunk$lines2.startsWith('\\')); }); }); }); } function parsePatch(uniDiff) { var diffstr = uniDiff.split(/\n/), list = [], i = 0; function parseIndex() { var index = {}; list.push(index); // Parse diff metadata while (i < diffstr.length) { var line = diffstr[i]; // File header found, end parsing diff metadata if (/^(\-\-\-|\+\+\+|@@)\s/.test(line)) { break; } // Diff index var header = /^(?:Index:|diff(?: -r \w+)+)\s+(.+?)\s*$/.exec(line); if (header) { index.index = header[1]; } i++; } // Parse file headers if they are defined. Unified diff requires them, but // there's no technical issues to have an isolated hunk without file header parseFileHeader(index); parseFileHeader(index); // Parse hunks index.hunks = []; while (i < diffstr.length) { var _line = diffstr[i]; if (/^(Index:\s|diff\s|\-\-\-\s|\+\+\+\s|===================================================================)/.test(_line)) { break; } else if (/^@@/.test(_line)) { index.hunks.push(parseHunk()); } else if (_line) { throw new Error('Unknown line ' + (i + 1) + ' ' + JSON.stringify(_line)); } else { i++; } } } // Parses the --- and +++ headers, if none are found, no lines // are consumed. function parseFileHeader(index) { var fileHeader = /^(---|\+\+\+)\s+(.*)\r?$/.exec(diffstr[i]); if (fileHeader) { var keyPrefix = fileHeader[1] === '---' ? 'old' : 'new'; var data = fileHeader[2].split('\t', 2); var fileName = data[0].replace(/\\\\/g, '\\'); if (/^".*"$/.test(fileName)) { fileName = fileName.substr(1, fileName.length - 2); } index[keyPrefix + 'FileName'] = fileName; index[keyPrefix + 'Header'] = (data[1] || '').trim(); i++; } } // Parses a hunk // This assumes that we are at the start of a hunk. function parseHunk() { var chunkHeaderIndex = i, chunkHeaderLine = diffstr[i++], chunkHeader = chunkHeaderLine.split(/@@ -(\d+)(?:,(\d+))? \+(\d+)(?:,(\d+))? @@/); var hunk = { oldStart: +chunkHeader[1], oldLines: typeof chunkHeader[2] === 'undefined' ? 1 : +chunkHeader[2], newStart: +chunkHeader[3], newLines: typeof chunkHeader[4] === 'undefined' ? 1 : +chunkHeader[4], lines: [] }; // Unified Diff Format quirk: If the chunk size is 0, // the first number is one lower than one would expect. // https://www.artima.com/weblogs/viewpost.jsp?thread=164293 if (hunk.oldLines === 0) { hunk.oldStart += 1; } if (hunk.newLines === 0) { hunk.newStart += 1; } var addCount = 0, removeCount = 0; for (; i < diffstr.length && (removeCount < hunk.oldLines || addCount < hunk.newLines || (_diffstr$i = diffstr[i]) !== null && _diffstr$i !== void 0 && _diffstr$i.startsWith('\\')); i++) { var _diffstr$i; var operation = diffstr[i].length == 0 && i != diffstr.length - 1 ? ' ' : diffstr[i][0]; if (operation === '+' || operation === '-' || operation === ' ' || operation === '\\') { hunk.lines.push(diffstr[i]); if (operation === '+') { addCount++; } else if (operation === '-') { removeCount++; } else if (operation === ' ') { addCount++; removeCount++; } } else { throw new Error("Hunk at line ".concat(chunkHeaderIndex + 1, " contained invalid line ").concat(diffstr[i])); } } // Handle the empty block count case if (!addCount && hunk.newLines === 1) { hunk.newLines = 0; } if (!removeCount && hunk.oldLines === 1) { hunk.oldLines = 0; } // Perform sanity checking if (addCount !== hunk.newLines) { throw new Error('Added line count did not match for hunk at line ' + (chunkHeaderIndex + 1)); } if (removeCount !== hunk.oldLines) { throw new Error('Removed line count did not match for hunk at line ' + (chunkHeaderIndex + 1)); } return hunk; } while (i < diffstr.length) { parseIndex(); } return list; } // Iterator that traverses in the range of [min, max], stepping // by distance from a given start position. I.e. for [0, 4], with // start of 2, this will iterate 2, 3, 1, 4, 0. function distanceIterator (start, minLine, maxLine) { var wantForward = true, backwardExhausted = false, forwardExhausted = false, localOffset = 1; return function iterator() { if (wantForward && !forwardExhausted) { if (backwardExhausted) { localOffset++; } else { wantForward = false; } // Check if trying to fit beyond text length, and if not, check it fits // after offset location (or desired location on first iteration) if (start + localOffset <= maxLine) { return start + localOffset; } forwardExhausted = true; } if (!backwardExhausted) { if (!forwardExhausted) { wantForward = true; } // Check if trying to fit before text beginning, and if not, check it fits // before offset location if (minLine <= start - localOffset) { return start - localOffset++; } backwardExhausted = true; return iterator(); } // We tried to fit hunk before text beginning and beyond text length, then // hunk can't fit on the text. Return undefined }; } function applyPatch(source, uniDiff) { var options = arguments.length > 2 && arguments[2] !== undefined ? arguments[2] : {}; if (typeof uniDiff === 'string') { uniDiff = parsePatch(uniDiff); } if (Array.isArray(uniDiff)) { if (uniDiff.length > 1) { throw new Error('applyPatch only works with a single input.'); } uniDiff = uniDiff[0]; } if (options.autoConvertLineEndings || options.autoConvertLineEndings == null) { if (hasOnlyWinLineEndings(source) && isUnix(uniDiff)) { uniDiff = unixToWin(uniDiff); } else if (hasOnlyUnixLineEndings(source) && isWin(uniDiff)) { uniDiff = winToUnix(uniDiff); } } // Apply the diff to the input var lines = source.split('\n'), hunks = uniDiff.hunks, compareLine = options.compareLine || function (lineNumber, line, operation, patchContent) { return line === patchContent; }, fuzzFactor = options.fuzzFactor || 0, minLine = 0; if (fuzzFactor < 0 || !Number.isInteger(fuzzFactor)) { throw new Error('fuzzFactor must be a non-negative integer'); } // Special case for empty patch. if (!hunks.length) { return source; } // Before anything else, handle EOFNL insertion/removal. If the patch tells us to make a change // to the EOFNL that is redundant/impossible - i.e. to remove a newline that's not there, or add a // newline that already exists - then we either return false and fail to apply the patch (if // fuzzFactor is 0) or simply ignore the problem and do nothing (if fuzzFactor is >0). // If we do need to remove/add a newline at EOF, this will always be in the final hunk: var prevLine = '', removeEOFNL = false, addEOFNL = false; for (var i = 0; i < hunks[hunks.length - 1].lines.length; i++) { var line = hunks[hunks.length - 1].lines[i]; if (line[0] == '\\') { if (prevLine[0] == '+') { removeEOFNL = true; } else if (prevLine[0] == '-') { addEOFNL = true; } } prevLine = line; } if (removeEOFNL) { if (addEOFNL) { // This means the final line gets changed but doesn't have a trailing newline in either the // original or patched version. In that case, we do nothing if fuzzFactor > 0, and if // fuzzFactor is 0, we simply validate that the source file has no trailing newline. if (!fuzzFactor && lines[lines.length - 1] == '') { return false; } } else if (lines[lines.length - 1] == '') { lines.pop(); } else if (!fuzzFactor) { return false; } } else if (addEOFNL) { if (lines[lines.length - 1] != '') { lines.push(''); } else if (!fuzzFactor) { return false; } } /** * Checks if the hunk can be made to fit at the provided location with at most `maxErrors` * insertions, substitutions, or deletions, while ensuring also that: * - lines deleted in the hunk match exactly, and * - wherever an insertion operation or block of insertion operations appears in the hunk, the * immediately preceding and following lines of context match exactly * * `toPos` should be set such that lines[toPos] is meant to match hunkLines[0]. * * If the hunk can be applied, returns an object with properties `oldLineLastI` and * `replacementLines`. Otherwise, returns null. */ function applyHunk(hunkLines, toPos, maxErrors) { var hunkLinesI = arguments.length > 3 && arguments[3] !== undefined ? arguments[3] : 0; var lastContextLineMatched = arguments.length > 4 && arguments[4] !== undefined ? arguments[4] : true; var patchedLines = arguments.length > 5 && arguments[5] !== undefined ? arguments[5] : []; var patchedLinesLength = arguments.length > 6 && arguments[6] !== undefined ? arguments[6] : 0; var nConsecutiveOldContextLines = 0; var nextContextLineMustMatch = false; for (; hunkLinesI < hunkLines.length; hunkLinesI++) { var hunkLine = hunkLines[hunkLinesI], operation = hunkLine.length > 0 ? hunkLine[0] : ' ', content = hunkLine.length > 0 ? hunkLine.substr(1) : hunkLine; if (operation === '-') { if (compareLine(toPos + 1, lines[toPos], operation, content)) { toPos++; nConsecutiveOldContextLines = 0; } else { if (!maxErrors || lines[toPos] == null) { return null; } patchedLines[patchedLinesLength] = lines[toPos]; return applyHunk(hunkLines, toPos + 1, maxErrors - 1, hunkLinesI, false, patchedLines, patchedLinesLength + 1); } } if (operation === '+') { if (!lastContextLineMatched) { return null; } patchedLines[patchedLinesLength] = content; patchedLinesLength++; nConsecutiveOldContextLines = 0; nextContextLineMustMatch = true; } if (operation === ' ') { nConsecutiveOldContextLines++; patchedLines[patchedLinesLength] = lines[toPos]; if (compareLine(toPos + 1, lines[toPos], operation, content)) { patchedLinesLength++; lastContextLineMatched = true; nextContextLineMustMatch = false; toPos++; } else { if (nextContextLineMustMatch || !maxErrors) { return null; } // Consider 3 possibilities in sequence: // 1. lines contains a *substitution* not included in the patch context, or // 2. lines contains an *insertion* not included in the patch context, or // 3. lines contains a *deletion* not included in the patch context // The first two options are of course only possible if the line from lines is non-null - // i.e. only option 3 is possible if we've overrun the end of the old file. return lines[toPos] && (applyHunk(hunkLines, toPos + 1, maxErrors - 1, hunkLinesI + 1, false, patchedLines, patchedLinesLength + 1) || applyHunk(hunkLines, toPos + 1, maxErrors - 1, hunkLinesI, false, patchedLines, patchedLinesLength + 1)) || applyHunk(hunkLines, toPos, maxErrors - 1, hunkLinesI + 1, false, patchedLines, patchedLinesLength); } } } // Before returning, trim any unmodified context lines off the end of patchedLines and reduce // toPos (and thus oldLineLastI) accordingly. This allows later hunks to be applied to a region // that starts in this hunk's trailing context. patchedLinesLength -= nConsecutiveOldContextLines; toPos -= nConsecutiveOldContextLines; patchedLines.length = patchedLinesLength; return { patchedLines: patchedLines, oldLineLastI: toPos - 1 }; } var resultLines = []; // Search best fit offsets for each hunk based on the previous ones var prevHunkOffset = 0; for (var _i = 0; _i < hunks.length; _i++) { var hunk = hunks[_i]; var hunkResult = void 0; var maxLine = lines.length - hunk.oldLines + fuzzFactor; var toPos = void 0; for (var maxErrors = 0; maxErrors <= fuzzFactor; maxErrors++) { toPos = hunk.oldStart + prevHunkOffset - 1; var iterator = distanceIterator(toPos, minLine, maxLine); for (; toPos !== undefined; toPos = iterator()) { hunkResult = applyHunk(hunk.lines, toPos, maxErrors); if (hunkResult) { break; } } if (hunkResult) { break; } } if (!hunkResult) { return false; } // Copy everything from the end of where we applied the last hunk to the start of this hunk for (var _i2 = minLine; _i2 < toPos; _i2++) { resultLines.push(lines[_i2]); } // Add the lines produced by applying the hunk: for (var _i3 = 0; _i3 < hunkResult.patchedLines.length; _i3++) { var _line = hunkResult.patchedLines[_i3]; resultLines.push(_line); } // Set lower text limit to end of the curren