diamante-base
Version:
Low-level support library for the Diamante network.
258 lines (257 loc) • 20.9 kB
JavaScript
"use strict";
Object.defineProperty(exports, "__esModule", {
value: true
});
exports.authorizeEntry = authorizeEntry;
exports.authorizeInvocation = authorizeInvocation;
var _xdr = _interopRequireDefault(require("./xdr"));
var _keypair = require("./keypair");
var _strkey = require("./strkey");
var _network = require("./network");
var _hashing = require("./hashing");
var _address = require("./address");
var _scval = require("./scval");
function _interopRequireDefault(e) { return e && e.__esModule ? e : { "default": e }; }
function _typeof(o) { "@babel/helpers - typeof"; return _typeof = "function" == typeof Symbol && "symbol" == typeof Symbol.iterator ? function (o) { return typeof o; } : function (o) { return o && "function" == typeof Symbol && o.constructor === Symbol && o !== Symbol.prototype ? "symbol" : typeof o; }, _typeof(o); }
function _regeneratorRuntime() { "use strict"; /*! regenerator-runtime -- Copyright (c) 2014-present, Facebook, Inc. -- license (MIT): https://github.com/facebook/regenerator/blob/main/LICENSE */ _regeneratorRuntime = function _regeneratorRuntime() { return e; }; var t, e = {}, r = Object.prototype, n = r.hasOwnProperty, o = Object.defineProperty || function (t, e, r) { t[e] = r.value; }, i = "function" == typeof Symbol ? Symbol : {}, a = i.iterator || "@@iterator", c = i.asyncIterator || "@@asyncIterator", u = i.toStringTag || "@@toStringTag"; function define(t, e, r) { return Object.defineProperty(t, e, { value: r, enumerable: !0, configurable: !0, writable: !0 }), t[e]; } try { define({}, ""); } catch (t) { define = function define(t, e, r) { return t[e] = r; }; } function wrap(t, e, r, n) { var i = e && e.prototype instanceof Generator ? e : Generator, a = Object.create(i.prototype), c = new Context(n || []); return o(a, "_invoke", { value: makeInvokeMethod(t, r, c) }), a; } function tryCatch(t, e, r) { try { return { type: "normal", arg: t.call(e, r) }; } catch (t) { return { type: "throw", arg: t }; } } e.wrap = wrap; var h = "suspendedStart", l = "suspendedYield", f = "executing", s = "completed", y = {}; function Generator() {} function GeneratorFunction() {} function GeneratorFunctionPrototype() {} var p = {}; define(p, a, function () { return this; }); var d = Object.getPrototypeOf, v = d && d(d(values([]))); v && v !== r && n.call(v, a) && (p = v); var g = GeneratorFunctionPrototype.prototype = Generator.prototype = Object.create(p); function defineIteratorMethods(t) { ["next", "throw", "return"].forEach(function (e) { define(t, e, function (t) { return this._invoke(e, t); }); }); } function AsyncIterator(t, e) { function invoke(r, o, i, a) { var c = tryCatch(t[r], t, o); if ("throw" !== c.type) { var u = c.arg, h = u.value; return h && "object" == _typeof(h) && n.call(h, "__await") ? e.resolve(h.__await).then(function (t) { invoke("next", t, i, a); }, function (t) { invoke("throw", t, i, a); }) : e.resolve(h).then(function (t) { u.value = t, i(u); }, function (t) { return invoke("throw", t, i, a); }); } a(c.arg); } var r; o(this, "_invoke", { value: function value(t, n) { function callInvokeWithMethodAndArg() { return new e(function (e, r) { invoke(t, n, e, r); }); } return r = r ? r.then(callInvokeWithMethodAndArg, callInvokeWithMethodAndArg) : callInvokeWithMethodAndArg(); } }); } function makeInvokeMethod(e, r, n) { var o = h; return function (i, a) { if (o === f) throw Error("Generator is already running"); if (o === s) { if ("throw" === i) throw a; return { value: t, done: !0 }; } for (n.method = i, n.arg = a;;) { var c = n.delegate; if (c) { var u = maybeInvokeDelegate(c, n); if (u) { if (u === y) continue; return u; } } if ("next" === n.method) n.sent = n._sent = n.arg;else if ("throw" === n.method) { if (o === h) throw o = s, n.arg; n.dispatchException(n.arg); } else "return" === n.method && n.abrupt("return", n.arg); o = f; var p = tryCatch(e, r, n); if ("normal" === p.type) { if (o = n.done ? s : l, p.arg === y) continue; return { value: p.arg, done: n.done }; } "throw" === p.type && (o = s, n.method = "throw", n.arg = p.arg); } }; } function maybeInvokeDelegate(e, r) { var n = r.method, o = e.iterator[n]; if (o === t) return r.delegate = null, "throw" === n && e.iterator["return"] && (r.method = "return", r.arg = t, maybeInvokeDelegate(e, r), "throw" === r.method) || "return" !== n && (r.method = "throw", r.arg = new TypeError("The iterator does not provide a '" + n + "' method")), y; var i = tryCatch(o, e.iterator, r.arg); if ("throw" === i.type) return r.method = "throw", r.arg = i.arg, r.delegate = null, y; var a = i.arg; return a ? a.done ? (r[e.resultName] = a.value, r.next = e.nextLoc, "return" !== r.method && (r.method = "next", r.arg = t), r.delegate = null, y) : a : (r.method = "throw", r.arg = new TypeError("iterator result is not an object"), r.delegate = null, y); } function pushTryEntry(t) { var e = { tryLoc: t[0] }; 1 in t && (e.catchLoc = t[1]), 2 in t && (e.finallyLoc = t[2], e.afterLoc = t[3]), this.tryEntries.push(e); } function resetTryEntry(t) { var e = t.completion || {}; e.type = "normal", delete e.arg, t.completion = e; } function Context(t) { this.tryEntries = [{ tryLoc: "root" }], t.forEach(pushTryEntry, this), this.reset(!0); } function values(e) { if (e || "" === e) { var r = e[a]; if (r) return r.call(e); if ("function" == typeof e.next) return e; if (!isNaN(e.length)) { var o = -1, i = function next() { for (; ++o < e.length;) if (n.call(e, o)) return next.value = e[o], next.done = !1, next; return next.value = t, next.done = !0, next; }; return i.next = i; } } throw new TypeError(_typeof(e) + " is not iterable"); } return GeneratorFunction.prototype = GeneratorFunctionPrototype, o(g, "constructor", { value: GeneratorFunctionPrototype, configurable: !0 }), o(GeneratorFunctionPrototype, "constructor", { value: GeneratorFunction, configurable: !0 }), GeneratorFunction.displayName = define(GeneratorFunctionPrototype, u, "GeneratorFunction"), e.isGeneratorFunction = function (t) { var e = "function" == typeof t && t.constructor; return !!e && (e === GeneratorFunction || "GeneratorFunction" === (e.displayName || e.name)); }, e.mark = function (t) { return Object.setPrototypeOf ? Object.setPrototypeOf(t, GeneratorFunctionPrototype) : (t.__proto__ = GeneratorFunctionPrototype, define(t, u, "GeneratorFunction")), t.prototype = Object.create(g), t; }, e.awrap = function (t) { return { __await: t }; }, defineIteratorMethods(AsyncIterator.prototype), define(AsyncIterator.prototype, c, function () { return this; }), e.AsyncIterator = AsyncIterator, e.async = function (t, r, n, o, i) { void 0 === i && (i = Promise); var a = new AsyncIterator(wrap(t, r, n, o), i); return e.isGeneratorFunction(r) ? a : a.next().then(function (t) { return t.done ? t.value : a.next(); }); }, defineIteratorMethods(g), define(g, u, "Generator"), define(g, a, function () { return this; }), define(g, "toString", function () { return "[object Generator]"; }), e.keys = function (t) { var e = Object(t), r = []; for (var n in e) r.push(n); return r.reverse(), function next() { for (; r.length;) { var t = r.pop(); if (t in e) return next.value = t, next.done = !1, next; } return next.done = !0, next; }; }, e.values = values, Context.prototype = { constructor: Context, reset: function reset(e) { if (this.prev = 0, this.next = 0, this.sent = this._sent = t, this.done = !1, this.delegate = null, this.method = "next", this.arg = t, this.tryEntries.forEach(resetTryEntry), !e) for (var r in this) "t" === r.charAt(0) && n.call(this, r) && !isNaN(+r.slice(1)) && (this[r] = t); }, stop: function stop() { this.done = !0; var t = this.tryEntries[0].completion; if ("throw" === t.type) throw t.arg; return this.rval; }, dispatchException: function dispatchException(e) { if (this.done) throw e; var r = this; function handle(n, o) { return a.type = "throw", a.arg = e, r.next = n, o && (r.method = "next", r.arg = t), !!o; } for (var o = this.tryEntries.length - 1; o >= 0; --o) { var i = this.tryEntries[o], a = i.completion; if ("root" === i.tryLoc) return handle("end"); if (i.tryLoc <= this.prev) { var c = n.call(i, "catchLoc"), u = n.call(i, "finallyLoc"); if (c && u) { if (this.prev < i.catchLoc) return handle(i.catchLoc, !0); if (this.prev < i.finallyLoc) return handle(i.finallyLoc); } else if (c) { if (this.prev < i.catchLoc) return handle(i.catchLoc, !0); } else { if (!u) throw Error("try statement without catch or finally"); if (this.prev < i.finallyLoc) return handle(i.finallyLoc); } } } }, abrupt: function abrupt(t, e) { for (var r = this.tryEntries.length - 1; r >= 0; --r) { var o = this.tryEntries[r]; if (o.tryLoc <= this.prev && n.call(o, "finallyLoc") && this.prev < o.finallyLoc) { var i = o; break; } } i && ("break" === t || "continue" === t) && i.tryLoc <= e && e <= i.finallyLoc && (i = null); var a = i ? i.completion : {}; return a.type = t, a.arg = e, i ? (this.method = "next", this.next = i.finallyLoc, y) : this.complete(a); }, complete: function complete(t, e) { if ("throw" === t.type) throw t.arg; return "break" === t.type || "continue" === t.type ? this.next = t.arg : "return" === t.type ? (this.rval = this.arg = t.arg, this.method = "return", this.next = "end") : "normal" === t.type && e && (this.next = e), y; }, finish: function finish(t) { for (var e = this.tryEntries.length - 1; e >= 0; --e) { var r = this.tryEntries[e]; if (r.finallyLoc === t) return this.complete(r.completion, r.afterLoc), resetTryEntry(r), y; } }, "catch": function _catch(t) { for (var e = this.tryEntries.length - 1; e >= 0; --e) { var r = this.tryEntries[e]; if (r.tryLoc === t) { var n = r.completion; if ("throw" === n.type) { var o = n.arg; resetTryEntry(r); } return o; } } throw Error("illegal catch attempt"); }, delegateYield: function delegateYield(e, r, n) { return this.delegate = { iterator: values(e), resultName: r, nextLoc: n }, "next" === this.method && (this.arg = t), y; } }, e; }
function asyncGeneratorStep(n, t, e, r, o, a, c) { try { var i = n[a](c), u = i.value; } catch (n) { return void e(n); } i.done ? t(u) : Promise.resolve(u).then(r, o); }
function _asyncToGenerator(n) { return function () { var t = this, e = arguments; return new Promise(function (r, o) { var a = n.apply(t, e); function _next(n) { asyncGeneratorStep(a, r, o, _next, _throw, "next", n); } function _throw(n) { asyncGeneratorStep(a, r, o, _next, _throw, "throw", n); } _next(void 0); }); }; }
/**
* @async
* @callback SigningCallback A callback for signing an XDR structure
* representing all of the details necessary to authorize an invocation tree.
*
* @param {xdr.HashIdPreimage} preimage the entire authorization envelope
* whose hash you should sign, so that you can inspect the entire structure
* if necessary (rather than blindly signing a hash)
*
* @returns {Promise<Uint8Array>} the signature of the raw payload (which is
* the sha256 hash of the preimage bytes, so `hash(preimage.toXDR())`) signed
* by the key corresponding to the public key in the entry you pass to
* {@link authorizeEntry} (decipherable from its
* `credentials().address().address()`)
*/
/**
* Actually authorizes an existing authorization entry using the given the
* credentials and expiration details, returning a signed copy.
*
* This "fills out" the authorization entry with a signature, indicating to the
* {@link Operation.invokeHostFunction} its attached to that:
* - a particular identity (i.e. signing {@link Keypair} or other signer)
* - approving the execution of an invocation tree (i.e. a simulation-acquired
* {@link xdr.SorobanAuthorizedInvocation} or otherwise built)
* - on a particular network (uniquely identified by its passphrase, see
* {@link Networks})
* - until a particular ledger sequence is reached.
*
* This one lets you pass a either a {@link Keypair} (or, more accurately,
* anything with a `sign(Buffer): Buffer` method) or a callback function (see
* {@link SigningCallback}) to handle signing the envelope hash.
*
* @param {xdr.SorobanAuthorizationEntry} entry an unsigned authorization entr
* @param {Keypair | SigningCallback} signer either a {@link Keypair} instance
* or a function which takes a payload (a
* {@link xdr.HashIdPreimageSorobanAuthorization} instance) input and returns
* the signature of the hash of the raw payload bytes (where the signing key
* should correspond to the address in the `entry`)
* @param {number} validUntilLedgerSeq the (exclusive) future ledger sequence
* number until which this authorization entry should be valid (if
* `currentLedgerSeq==validUntil`, this is expired))
* @param {string} [networkPassphrase] the network passphrase is incorprated
* into the signature (see {@link Networks} for options)
*
* @returns {Promise<xdr.SorobanAuthorizationEntry>} a promise for an
* authorization entry that you can pass along to
* {@link Operation.invokeHostFunction}
*
* @see authorizeInvocation
* @example
* import {
* SorobanRpc,
* Transaction,
* Networks,
* authorizeEntry
* } from '@diamante/diamante-sdk';
*
* // Assume signPayloadCallback is a well-formed signing callback.
* //
* // It might, for example, pop up a modal from a browser extension, send the
* // transaction to a third-party service for signing, or just do simple
* // signing via Keypair like it does here:
* function signPayloadCallback(payload) {
* return signer.sign(hash(payload.toXDR());
* }
*
* function multiPartyAuth(
* server: SorobanRpc.Server,
* // assume this involves multi-party auth
* tx: Transaction,
* ) {
* return server
* .simulateTransaction(tx)
* .then((simResult) => {
* tx.operations[0].auth.map(entry =>
* authorizeEntry(
* entry,
* signPayloadCallback,
* currentLedger + 1000,
* Networks.TESTNET);
* ));
*
* return server.prepareTransaction(tx, simResult);
* })
* .then((preppedTx) => {
* preppedTx.sign(source);
* return server.sendTransaction(preppedTx);
* });
* }
*/
function authorizeEntry(_x, _x2, _x3) {
return _authorizeEntry.apply(this, arguments);
}
/**
* This builds an entry from scratch, allowing you to express authorization as a
* function of:
* - a particular identity (i.e. signing {@link Keypair} or other signer)
* - approving the execution of an invocation tree (i.e. a simulation-acquired
* {@link xdr.SorobanAuthorizedInvocation} or otherwise built)
* - on a particular network (uniquely identified by its passphrase, see
* {@link Networks})
* - until a particular ledger sequence is reached.
*
* This is in contrast to {@link authorizeEntry}, which signs an existing entry.
*
* @param {Keypair | SigningCallback} signer either a {@link Keypair} instance
* (or anything with a `.sign(buf): Buffer-like` method) or a function which
* takes a payload (a {@link xdr.HashIdPreimageSorobanAuthorization}
* instance) input and returns the signature of the hash of the raw payload
* bytes (where the signing key should correspond to the address in the
* `entry`)
* @param {number} validUntilLedgerSeq the (exclusive) future ledger sequence
* number until which this authorization entry should be valid (if
* `currentLedgerSeq==validUntilLedgerSeq`, this is expired))
* @param {xdr.SorobanAuthorizedInvocation} invocation the invocation tree that
* we're authorizing (likely, this comes from transaction simulation)
* @param {string} [publicKey] the public identity of the signer (when
* providing a {@link Keypair} to `signer`, this can be omitted, as it just
* uses {@link Keypair.publicKey})
* @param {string} [networkPassphrase] the network passphrase is incorprated
* into the signature (see {@link Networks} for options, default:
* {@link Networks.FUTURENET})
*
* @returns {Promise<xdr.SorobanAuthorizationEntry>} a promise for an
* authorization entry that you can pass along to
* {@link Operation.invokeHostFunction}
*
* @see authorizeEntry
*/
function _authorizeEntry() {
_authorizeEntry = _asyncToGenerator( /*#__PURE__*/_regeneratorRuntime().mark(function _callee(entry, signer, validUntilLedgerSeq) {
var networkPassphrase,
clone,
addrAuth,
networkId,
preimage,
payload,
signature,
publicKey,
sigScVal,
_args = arguments;
return _regeneratorRuntime().wrap(function _callee$(_context) {
while (1) switch (_context.prev = _context.next) {
case 0:
networkPassphrase = _args.length > 3 && _args[3] !== undefined ? _args[3] : _network.Networks.FUTURENET;
if (!(entry.credentials()["switch"]().value !== _xdr["default"].SorobanCredentialsType.sorobanCredentialsAddress().value)) {
_context.next = 3;
break;
}
return _context.abrupt("return", entry);
case 3:
clone = _xdr["default"].SorobanAuthorizationEntry.fromXDR(entry.toXDR());
/** @type {xdr.SorobanAddressCredentials} */
addrAuth = clone.credentials().address();
addrAuth.signatureExpirationLedger(validUntilLedgerSeq);
networkId = (0, _hashing.hash)(Buffer.from(networkPassphrase));
preimage = _xdr["default"].HashIdPreimage.envelopeTypeSorobanAuthorization(new _xdr["default"].HashIdPreimageSorobanAuthorization({
networkId: networkId,
nonce: addrAuth.nonce(),
invocation: clone.rootInvocation(),
signatureExpirationLedger: addrAuth.signatureExpirationLedger()
}));
payload = (0, _hashing.hash)(preimage.toXDR());
if (!(typeof signer === 'function')) {
_context.next = 17;
break;
}
_context.t0 = Buffer;
_context.next = 13;
return signer(preimage);
case 13:
_context.t1 = _context.sent;
signature = _context.t0.from.call(_context.t0, _context.t1);
_context.next = 18;
break;
case 17:
signature = Buffer.from(signer.sign(payload));
case 18:
publicKey = _address.Address.fromScAddress(addrAuth.address()).toString();
if (_keypair.Keypair.fromPublicKey(publicKey).verify(payload, signature)) {
_context.next = 21;
break;
}
throw new Error("signature doesn't match payload");
case 21:
// This structure is defined here:
// https://soroban.diamante.org/docs/fundamentals-and-concepts/invoking-contracts-with-transactions#diamante-account-signatures
//
// Encoding a contract structure as an ScVal means the map keys are supposed
// to be symbols, hence the forced typing here.
sigScVal = (0, _scval.nativeToScVal)({
public_key: _strkey.StrKey.decodeEd25519PublicKey(publicKey),
signature: signature
}, {
type: {
public_key: ['symbol', null],
signature: ['symbol', null]
}
});
addrAuth.signature(_xdr["default"].ScVal.scvVec([sigScVal]));
return _context.abrupt("return", clone);
case 24:
case "end":
return _context.stop();
}
}, _callee);
}));
return _authorizeEntry.apply(this, arguments);
}
function authorizeInvocation(signer, validUntilLedgerSeq, invocation) {
var publicKey = arguments.length > 3 && arguments[3] !== undefined ? arguments[3] : '';
var networkPassphrase = arguments.length > 4 && arguments[4] !== undefined ? arguments[4] : _network.Networks.FUTURENET;
// We use keypairs as a source of randomness for the nonce to avoid mucking
// with any crypto dependencies. Note that this just has to be random and
// unique, not cryptographically secure, so it's fine.
var kp = _keypair.Keypair.random().rawPublicKey();
var nonce = new _xdr["default"].Int64(bytesToInt64(kp));
var pk = publicKey || signer.publicKey();
if (!pk) {
throw new Error("authorizeInvocation requires publicKey parameter");
}
var entry = new _xdr["default"].SorobanAuthorizationEntry({
rootInvocation: invocation,
credentials: _xdr["default"].SorobanCredentials.sorobanCredentialsAddress(new _xdr["default"].SorobanAddressCredentials({
address: new _address.Address(pk).toScAddress(),
nonce: nonce,
signatureExpirationLedger: 0,
// replaced
signature: _xdr["default"].ScVal.scvVec([]) // replaced
}))
});
return authorizeEntry(entry, signer, validUntilLedgerSeq, networkPassphrase);
}
function bytesToInt64(bytes) {
// eslint-disable-next-line no-bitwise
return bytes.subarray(0, 8).reduce(function (accum, b) {
return accum << 8 | b;
}, 0);
}