UNPKG

dd-trace

Version:

Datadog APM tracing client for JavaScript

488 lines (458 loc) 15.7 kB
'use strict' const log = require('../../../../dd-trace/src/log') const MODEL_TYPE_IDENTIFIERS = [ 'foundation-model/', 'custom-model/', 'provisioned-model/', 'imported-module/', 'prompt/', 'endpoint/', 'inference-profile/', 'default-prompt-router/' ] const PROVIDER = { AI21: 'AI21', AMAZON: 'AMAZON', ANTHROPIC: 'ANTHROPIC', COHERE: 'COHERE', META: 'META', STABILITY: 'STABILITY', MISTRAL: 'MISTRAL' } /** * Coerce the chunks into a single response body. * * @param {Array<{ chunk: { bytes: Buffer } }>} chunks * @param {string} modelProvider * @param {string} modelName * @returns {Generation | Record<never, never>} */ function extractTextAndResponseReasonFromStream (chunks, modelProvider, modelName) { const modelProviderUpper = modelProvider.toUpperCase() // streaming unsupported for AMAZON embedding models, COHERE embedding models, STABILITY if ( (modelProviderUpper === PROVIDER.AMAZON && modelName.includes('embed')) || (modelProviderUpper === PROVIDER.COHERE && modelName.includes('embed')) || modelProviderUpper === PROVIDER.STABILITY ) { return {} } let message = '' let inputTokens = 0 let outputTokens = 0 let cacheReadTokens = 0 let cacheWriteTokens = 0 for (const { chunk: { bytes } } of chunks) { const body = JSON.parse(Buffer.from(bytes).toString('utf8')) switch (modelProviderUpper) { case PROVIDER.AMAZON: { if (body?.outputText) { message += body?.outputText inputTokens = body?.inputTextTokenCount outputTokens = body?.totalOutputTextTokenCount } else if (body?.contentBlockDelta?.delta?.text) { message += body.contentBlockDelta.delta.text } break } case PROVIDER.AI21: { const content = body?.choices?.[0]?.delta?.content if (content) { message += content } break } case PROVIDER.ANTHROPIC: { if (body.completion) { message += body.completion } else if (body.delta?.text) { message += body.delta.text } if (body.message?.usage?.input_tokens) inputTokens = body.message.usage.input_tokens if (body.message?.usage?.output_tokens) outputTokens = body.message.usage.output_tokens break } case PROVIDER.COHERE: { if (body?.event_type === 'stream-end') { message = body.response?.text } break } case PROVIDER.META: { message += body?.generation break } case PROVIDER.MISTRAL: { message += body?.outputs?.[0]?.text break } } // by default, it seems newer versions of the AWS SDK include the input/output token counts in the response body const invocationMetrics = body['amazon-bedrock-invocationMetrics'] if (invocationMetrics) { inputTokens = invocationMetrics.inputTokenCount outputTokens = invocationMetrics.outputTokenCount cacheReadTokens = invocationMetrics.cacheReadInputTokenCount cacheWriteTokens = invocationMetrics.cacheWriteInputTokenCount } } return new Generation({ message, role: 'assistant', inputTokens, outputTokens, cacheReadTokens, cacheWriteTokens }) } class Generation { constructor ({ message = '', finishReason = '', choiceId = '', role, inputTokens, outputTokens, cacheReadTokens, cacheWriteTokens } = {}) { // stringify message as it could be a single generated message as well as a list of embeddings this.message = typeof message === 'string' ? message : JSON.stringify(message) || '' this.finishReason = finishReason || '' this.choiceId = choiceId || undefined this.role = role this.usage = { inputTokens, outputTokens, cacheReadTokens, cacheWriteTokens } } } class RequestParams { constructor ({ prompt = '', temperature, topP, topK, maxTokens, stopSequences = [], inputType = '', truncate = '', stream = '', n } = {}) { this.prompt = prompt this.temperature = temperature this.topP = topP this.topK = topK this.maxTokens = maxTokens this.stopSequences = stopSequences || [] this.inputType = inputType || '' this.truncate = truncate || '' this.stream = stream || '' this.n = n } } function parseModelId (modelId) { // Best effort to extract the model provider and model name from the bedrock model ID. // modelId can be a 1/2 period-separated string or a full AWS ARN, based on the following formats: // 1. Base model: "{model_provider}.{model_name}" // 2. Cross-region model: "{region}.{model_provider}.{model_name}" // 3. Other: Prefixed by AWS ARN "arn:aws{+region?}:bedrock:{region}:{account-id}:" // a. Foundation model: ARN prefix + "foundation-model/{region?}.{model_provider}.{model_name}" // b. Custom model: ARN prefix + "custom-model/{model_provider}.{model_name}" // c. Provisioned model: ARN prefix + "provisioned-model/{model-id}" // d. Imported model: ARN prefix + "imported-module/{model-id}" // e. Prompt management: ARN prefix + "prompt/{prompt-id}" // f. Sagemaker: ARN prefix + "endpoint/{model-id}" // g. Inference profile: ARN prefix + "{application-?}inference-profile/{model-id}" // h. Default prompt router: ARN prefix + "default-prompt-router/{prompt-id}" // If model provider cannot be inferred from the modelId formatting, then default to "custom" modelId = modelId.toLowerCase() if (!modelId.startsWith('arn:aws')) { const modelMeta = modelId.split('.') if (modelMeta.length < 2) { return { modelProvider: 'custom', modelName: modelMeta[0] } } return { modelProvider: modelMeta.at(-2), modelName: modelMeta.at(-1) } } for (const identifier of MODEL_TYPE_IDENTIFIERS) { if (!modelId.includes(identifier)) { continue } modelId = modelId.split(identifier).pop() if (['foundation-model/', 'custom-model/'].includes(identifier)) { const modelMeta = modelId.split('.') if (modelMeta.length < 2) { return { modelProvider: 'custom', modelName: modelId } } return { modelProvider: modelMeta.at(-2), modelName: modelMeta.at(-1) } } return { modelProvider: 'custom', modelName: modelId } } return { modelProvider: 'custom', modelName: 'custom' } } function extractRequestParams (params, provider) { const requestBody = JSON.parse(params.body) const modelId = params.modelId switch (provider.toUpperCase()) { case PROVIDER.AI21: { let userPrompt = requestBody.prompt if (modelId.includes('jamba')) { for (const message of requestBody.messages) { if (message.role === 'user') { userPrompt = message.content // Return the content of the most recent user message } } } return new RequestParams({ prompt: userPrompt, temperature: requestBody.temperature, topP: requestBody.top_p, maxTokens: requestBody.max_tokens, stopSequences: requestBody.stop_sequences }) } case PROVIDER.AMAZON: { const prompt = requestBody.inputText if (modelId.includes('embed')) { return new RequestParams({ prompt }) } else if (prompt !== undefined) { const textGenerationConfig = requestBody.textGenerationConfig || {} return new RequestParams({ prompt, temperature: textGenerationConfig.temperature, topP: textGenerationConfig.topP, maxTokens: textGenerationConfig.maxTokenCount, stopSequences: textGenerationConfig.stopSequences }) } else if (Array.isArray(requestBody.messages)) { const inferenceConfig = requestBody.inferenceConfig || {} const messages = [] if (Array.isArray(requestBody.system)) { for (const sysMsg of requestBody.system) { messages.push({ content: sysMsg.text, role: 'system' }) } } for (const message of requestBody.messages) { const textBlocks = message.content?.filter(block => block.text) || [] if (textBlocks.length > 0) { messages.push({ content: textBlocks.map(block => block.text).join(''), role: message.role }) } } return new RequestParams({ prompt: messages, temperature: inferenceConfig.temperature, topP: inferenceConfig.topP, maxTokens: inferenceConfig.maxTokens, stopSequences: inferenceConfig.stopSequences }) } return new RequestParams({ prompt }) } case PROVIDER.ANTHROPIC: { let prompt = requestBody.prompt if (Array.isArray(requestBody.messages)) { // newer claude models for (let idx = requestBody.messages.length - 1; idx >= 0; idx--) { const message = requestBody.messages[idx] if (message.role === 'user') { prompt = message.content?.filter(block => block.type === 'text') .map(block => block.text) .join('') break } } } return new RequestParams({ prompt, temperature: requestBody.temperature, topP: requestBody.top_p, maxTokens: requestBody.max_tokens_to_sample ?? requestBody.max_tokens, stopSequences: requestBody.stop_sequences }) } case PROVIDER.COHERE: { if (modelId.includes('embed')) { return new RequestParams({ prompt: requestBody.texts, inputType: requestBody.input_type, truncate: requestBody.truncate }) } return new RequestParams({ prompt: requestBody.prompt, temperature: requestBody.temperature, topP: requestBody.p, maxTokens: requestBody.max_tokens, stopSequences: requestBody.stop_sequences, stream: requestBody.stream, n: requestBody.num_generations }) } case PROVIDER.META: { return new RequestParams({ prompt: requestBody.prompt, temperature: requestBody.temperature, topP: requestBody.top_p, maxTokens: requestBody.max_gen_len }) } case PROVIDER.MISTRAL: { return new RequestParams({ prompt: requestBody.prompt, temperature: requestBody.temperature, topP: requestBody.top_p, maxTokens: requestBody.max_tokens, stopSequences: requestBody.stop, topK: requestBody.top_k }) } case PROVIDER.STABILITY: { return new RequestParams() } default: { return new RequestParams() } } } function extractTextAndResponseReason (response, provider, modelName) { const body = JSON.parse(Buffer.from(response.body).toString('utf8')) const shouldSetChoiceIds = provider.toUpperCase() === PROVIDER.COHERE && !modelName.includes('embed') try { switch (provider.toUpperCase()) { case PROVIDER.AI21: { if (modelName.includes('jamba')) { const generations = body.choices || [] if (generations.length > 0) { const generation = generations[0] return new Generation({ message: generation.message.content, finishReason: generation.finish_reason, choiceId: shouldSetChoiceIds ? generation.id : undefined, role: generation.message.role, inputTokens: body.usage?.prompt_tokens, outputTokens: body.usage?.completion_tokens }) } } const completions = body.completions || [] if (completions.length > 0) { const completion = completions[0] return new Generation({ message: completion.data?.text, finishReason: completion?.finishReason, choiceId: shouldSetChoiceIds ? completion?.id : undefined, inputTokens: body.usage?.prompt_tokens, outputTokens: body.usage?.completion_tokens }) } return new Generation() } case PROVIDER.AMAZON: { if (modelName.includes('embed')) { return new Generation({ message: body.embedding }) } if (body.results) { const results = body.results || [] if (results.length > 0) { const result = results[0] return new Generation({ message: result.outputText, finishReason: result.completionReason, inputTokens: body.inputTextTokenCount, outputTokens: result.tokenCount }) } } else if (body.output) { const output = body.output || {} return new Generation({ message: output.message?.content[0]?.text ?? 'Unsupported content type', finishReason: body.stopReason, role: output.message?.role, inputTokens: body.usage?.inputTokens, outputTokens: body.usage?.outputTokens, cacheReadInputTokenCount: body.usage?.cacheReadInputTokenCount, cacheWriteInputTokenCount: body.usage?.cacheWriteInputTokenCount }) } break } case PROVIDER.ANTHROPIC: { let message = body.completion if (Array.isArray(body.content)) { // newer claude models message = body.content.find(item => item.type === 'text')?.text ?? body.content } else if (body.content) { message = body.content } return new Generation({ message, finishReason: body.stop_reason }) } case PROVIDER.COHERE: { if (modelName.includes('embed')) { const embeddings = body.embeddings || [[]] if (embeddings.length > 0) { return new Generation({ message: embeddings[0] }) } } if (body.text) { return new Generation({ message: body.text, finishReason: body.finish_reason, choiceId: shouldSetChoiceIds ? body.response_id : undefined }) } const generations = body.generations || [] if (generations.length > 0) { const generation = generations[0] return new Generation({ message: generation.text, finishReason: generation.finish_reason, choiceId: shouldSetChoiceIds ? generation.id : undefined }) } break } case PROVIDER.META: { return new Generation({ message: body.generation, finishReason: body.stop_reason, inputTokens: body.prompt_token_count, outputTokens: body.generation_token_count }) } case PROVIDER.MISTRAL: { const mistralGenerations = body.outputs || [] if (mistralGenerations.length > 0) { const generation = mistralGenerations[0] return new Generation({ message: generation.text, finishReason: generation.stop_reason }) } break } case PROVIDER.STABILITY: { return new Generation() } default: { return new Generation() } } } catch { log.warn('Unable to extract text/finishReason from response body. Defaulting to empty text/finishReason.') return new Generation() } return new Generation() } module.exports = { Generation, RequestParams, extractTextAndResponseReasonFromStream, parseModelId, extractRequestParams, extractTextAndResponseReason, PROVIDER }