UNPKG

datastream-js

Version:

DataStream.js is a library for reading data from ArrayBuffers

1,535 lines (1,448 loc) 68 kB
import {TextEncoder, TextDecoder} from "text-encoding"; export type TypedArray = | Int8Array | Uint8Array | Uint8ClampedArray | Int16Array | Uint16Array | Int32Array | Uint32Array | Float32Array | Float64Array; /** @deprecated use DataStream.read/write(TypeDef) instead of readStruct/writeStruct */ export type StructReadFn = (ds: DataStream, struct: object) => any; /** @deprecated use DataStream.read/write(TypeDef) instead of readStruct/writeStruct */ export type LenFn = (struct: object, ds: DataStream, def: StructRead) => any; // https://github.com/Microsoft/TypeScript/issues/3496#issuecomment-128553540 /** @deprecated use DataStream.read/write(TypeDef) instead of readStruct/writeStruct */ export type StructRead = | string | StructReadFn | {get: StructReadFn} | ["[]", string, string | LenFn] | StructReadArray; /** @deprecated use DataStream.read/write(TypeDef) instead of readStruct/writeStruct */ // tslint:disable-next-line no-empty-interface export interface StructReadArray extends Array<StructRead> {} /** @deprecated use DataStream.read/write(TypeDef) instead of readStruct/writeStruct */ export type StructWriteFn = ( ds: DataStream, field: string, struct: object ) => void; /** @deprecated use DataStream.read/write(TypeDef) instead of readStruct/writeStruct */ export type StructWrite = | string | StructWriteFn | {set: StructWriteFn} | StructWriteArray; /** @deprecated use DataStream.read/write(TypeDef) instead of readStruct/writeStruct */ // tslint:disable-next-line no-empty-interface export interface StructWriteArray extends Array<StructWrite> {} /** * Type endsWith '*' mean array. * Type endsWith '+' mean array | utf8 string with length encoded as Uint16 & write/read before the actual array | utf8 string. */ // prettier-ignore export type Type = "Int8" | "Int16" | "Int32" | "Uint8" | "Uint16" | "Uint32" | "Float32" | "Float64" | "Int8*" | "Int16*" | "Int32*" | "Uint8*" | "Uint16*" | "Uint32*" | "Float32*" | "Float64*" | "Utf8WithLen"; // tslint:disable-next-line no-empty-interface export interface TypeArr extends Array<Type | TypeArr> {} /** [0] is object field's name to read from or write into. * [1] is its type definition * examples: * ["num", "Int16"] * ["greet", "Utf8+"] * ["obj", [ * ["num", "Int8"], * ["len", "Uint16"], * ["greet", "Utf8"]] * ] */ export type TypeDef1 = [string, Type | TypeDef]; // tslint:disable-next-line no-empty-interface export interface TypeDef extends Array<TypeDef1> {} /** * DataStream reads scalars, arrays and structs of data from an ArrayBuffer. * It's like a file-like DataView on steroids. * * @param {ArrayBuffer} arrayBuffer ArrayBuffer to read from. * @param {?Number} byteOffset Offset from arrayBuffer beginning for the DataStream. * @param {?Boolean} endianness DataStream.BIG_ENDIAN or DataStream.LITTLE_ENDIAN (the default). */ export default class DataStream { private _byteOffset: number; position = 0; private _buffer: ArrayBuffer; private _dataView: DataView; constructor( arrayBuffer?: | ArrayBuffer | {buffer: ArrayBuffer; byteOffset: number; byteLength: number}, byteOffset?: number, public endianness: boolean = DataStream.LITTLE_ENDIAN ) { this._byteOffset = byteOffset || 0; if (arrayBuffer instanceof ArrayBuffer) { this.buffer = arrayBuffer; } else if (typeof arrayBuffer === "object") { this.dataView = arrayBuffer as any; if (byteOffset) { this._byteOffset += byteOffset; } } else { this.buffer = new ArrayBuffer(arrayBuffer || 1); } } /** * Big-endian const to use as default endianness. * @type {boolean} */ static readonly BIG_ENDIAN = false; /** * Little-endian const to use as default endianness. * @type {boolean} */ static readonly LITTLE_ENDIAN = true; /** * Whether to extend DataStream buffer when trying to write beyond its size. * If set, the buffer is reallocated to twice its current size until the * requested write fits the buffer. * @type {boolean} */ private _dynamicSize = true; get dynamicSize(): boolean { return this._dynamicSize; } set dynamicSize(v: boolean) { if (!v) { this._trimAlloc(); } this._dynamicSize = v; } /** * Virtual byte length of the DataStream backing buffer. * Updated to be max of original buffer size and last written size. * If dynamicSize is false is set to buffer size. * @type {number} */ private _byteLength = 0; /** * Returns the byte length of the DataStream object. * @type {number} */ get byteLength(): number { return this._byteLength - this._byteOffset; } /** * Set/get the backing ArrayBuffer of the DataStream object. * The setter updates the DataView to point to the new buffer. * @type {Object} */ get buffer(): ArrayBuffer { this._trimAlloc(); return this._buffer; } set buffer(v: ArrayBuffer) { this._buffer = v; this._dataView = new DataView(this._buffer, this._byteOffset); this._byteLength = this._buffer.byteLength; } /** * Set/get the byteOffset of the DataStream object. * The setter updates the DataView to point to the new byteOffset. * @type {number} */ get byteOffset(): number { return this._byteOffset; } set byteOffset(v: number) { this._byteOffset = v; this._dataView = new DataView(this._buffer, this._byteOffset); this._byteLength = this._buffer.byteLength; } /** * Set/get the backing DataView of the DataStream object. * The setter updates the buffer and byteOffset to point to the DataView values. * @type get: DataView, set: {buffer: ArrayBuffer, byteOffset: number, byteLength: number} */ get dataView(): DataView { return this._dataView; } set dataView(v: DataView) { this._byteOffset = v.byteOffset; this._buffer = v.buffer; this._dataView = new DataView(this._buffer, this._byteOffset); this._byteLength = this._byteOffset + v.byteLength; } bigEndian(): DataStream { this.endianness = DataStream.BIG_ENDIAN; return this; } /** * Internal function to resize the DataStream buffer when required. * @param {number} extra Number of bytes to add to the buffer allocation. * @return {null} */ private _realloc(extra: number) { if (!this._dynamicSize) { return; } const req = this._byteOffset + this.position + extra; let blen = this._buffer.byteLength; if (req <= blen) { if (req > this._byteLength) { this._byteLength = req; } return; } if (blen < 1) { blen = 1; } while (req > blen) { blen *= 2; } const buf = new ArrayBuffer(blen); const src = new Uint8Array(this._buffer); const dst = new Uint8Array(buf, 0, src.length); dst.set(src); this.buffer = buf; this._byteLength = req; } /** * Internal function to trim the DataStream buffer when required. * Used for stripping out the extra bytes from the backing buffer when * the virtual byteLength is smaller than the buffer byteLength (happens after * growing the buffer with writes and not filling the extra space completely). * @return {null} */ private _trimAlloc(): void { if (this._byteLength === this._buffer.byteLength) { return; } const buf = new ArrayBuffer(this._byteLength); const dst = new Uint8Array(buf); const src = new Uint8Array(this._buffer, 0, dst.length); dst.set(src); this.buffer = buf; } /** * Sets the DataStream read/write position to given position. * Clamps between 0 and DataStream length. * @param {number} pos Position to seek to. * @return {null} */ seek(pos) { const npos = Math.max(0, Math.min(this.byteLength, pos)); this.position = isNaN(npos) || !isFinite(npos) ? 0 : npos; } /** * Returns true if the DataStream seek pointer is at the end of buffer and * there's no more data to read. * @return {boolean} True if the seek pointer is at the end of the buffer. */ isEof() { return this.position >= this.byteLength; } /** * Maps an Int32Array into the DataStream buffer, swizzling it to native * endianness in-place. The current offset from the start of the buffer needs to * be a multiple of element size, just like with typed array views. * * Nice for quickly reading in data. Warning: potentially modifies the buffer * contents. * * @param {number} length Number of elements to map. * @param {?boolean} e Endianness of the data to read. * @return {Object} Int32Array to the DataStream backing buffer. */ mapInt32Array(length: number, e?: boolean): Int32Array { this._realloc(length * 4); const arr = new Int32Array( this._buffer, this.byteOffset + this.position, length ); DataStream.arrayToNative(arr, e == null ? this.endianness : e); this.position += length * 4; return arr; } /** * Maps an Int16Array into the DataStream buffer, swizzling it to native * endianness in-place. The current offset from the start of the buffer needs to * be a multiple of element size, just like with typed array views. * * Nice for quickly reading in data. Warning: potentially modifies the buffer * contents. * * @param {number} length Number of elements to map. * @param {?boolean} e Endianness of the data to read. * @return {Object} Int16Array to the DataStream backing buffer. */ mapInt16Array(length: number, e?: boolean): Int16Array { this._realloc(length * 2); const arr = new Int16Array( this._buffer, this.byteOffset + this.position, length ); DataStream.arrayToNative(arr, e == null ? this.endianness : e); this.position += length * 2; return arr; } /** * Maps an Int8Array into the DataStream buffer. * * Nice for quickly reading in data. * * @param {number} length Number of elements to map. * @return {Object} Int8Array to the DataStream backing buffer. */ mapInt8Array(length: number): Int8Array { this._realloc(length); const arr = new Int8Array( this._buffer, this.byteOffset + this.position, length ); this.position += length; return arr; } /** * Maps a Uint32Array into the DataStream buffer, swizzling it to native * endianness in-place. The current offset from the start of the buffer needs to * be a multiple of element size, just like with typed array views.* * Nice for quickly reading in data. Warning: potentially modifies the buffer * contents.* * @param {number} length Number of elements to map. * @param {?boolean} e Endianness of the data to read. * @return {Object} Uint32Array to the DataStream backing buffer. */ mapUint32Array(length: number, e?: boolean): Uint32Array { this._realloc(length * 4); const arr = new Uint32Array( this._buffer, this.byteOffset + this.position, length ); DataStream.arrayToNative(arr, e == null ? this.endianness : e); this.position += length * 4; return arr; } /** * Maps a Uint16Array into the DataStream buffer, swizzling it to native * endianness in-place. The current offset from the start of the buffer needs to * be a multiple of element size, just like with typed array views. * * Nice for quickly reading in data. Warning: potentially modifies the buffer * contents. * * @param {number} length Number of elements to map. * @param {?boolean} e Endianness of the data to read. * @return {Object} Uint16Array to the DataStream backing buffer. */ mapUint16Array(length: number, e?: boolean): Uint16Array { this._realloc(length * 2); const arr = new Uint16Array( this._buffer, this.byteOffset + this.position, length ); DataStream.arrayToNative(arr, e == null ? this.endianness : e); this.position += length * 2; return arr; } /** * Maps a Uint8Array into the DataStream buffer. * * Nice for quickly reading in data. * * @param {number} length Number of elements to map. * @return {Object} Uint8Array to the DataStream backing buffer. */ mapUint8Array(length: number): Uint8Array { this._realloc(length); const arr = new Uint8Array( this._buffer, this.byteOffset + this.position, length ); this.position += length; return arr; } /** * Maps a Float64Array into the DataStream buffer, swizzling it to native * endianness in-place. The current offset from the start of the buffer needs to * be a multiple of element size, just like with typed array views. * * Nice for quickly reading in data. Warning: potentially modifies the buffer * contents. * * @param {number} length Number of elements to map. * @param {?boolean} e Endianness of the data to read. * @return {Object} Float64Array to the DataStream backing buffer. */ mapFloat64Array(length: number, e?: boolean): Float64Array { this._realloc(length * 8); const arr = new Float64Array( this._buffer, this.byteOffset + this.position, length ); DataStream.arrayToNative(arr, e == null ? this.endianness : e); this.position += length * 8; return arr; } /** * Maps a Float32Array into the DataStream buffer, swizzling it to native * endianness in-place. The current offset from the start of the buffer needs to * be a multiple of element size, just like with typed array views. * * Nice for quickly reading in data. Warning: potentially modifies the buffer * contents. * * @param {number} length Number of elements to map. * @param {?boolean} e Endianness of the data to read. * @return {Object} Float32Array to the DataStream backing buffer. */ mapFloat32Array(length: number, e?: boolean): Float32Array { this._realloc(length * 4); const arr = new Float32Array( this._buffer, this.byteOffset + this.position, length ); DataStream.arrayToNative(arr, e == null ? this.endianness : e); this.position += length * 4; return arr; } /** * Reads an Int32Array of desired length and endianness from the DataStream. * * @param {number} length Number of elements to map. * @param {?boolean} e Endianness of the data to read. * @return {Object} The read Int32Array. */ readInt32Array(length: number, e?: boolean): Int32Array { length = length == null ? this.byteLength - this.position / 4 : length; const arr = new Int32Array(length); DataStream.memcpy( arr.buffer, 0, this.buffer, this.byteOffset + this.position, length * arr.BYTES_PER_ELEMENT ); DataStream.arrayToNative(arr, e == null ? this.endianness : e); this.position += arr.byteLength; return arr; } /** * Reads an Int16Array of desired length and endianness from the DataStream. * * @param {number} length Number of elements to map. * @param {?boolean} e Endianness of the data to read. * @return {Object} The read Int16Array. */ readInt16Array(length: number, e?: boolean): Int16Array { length = length == null ? this.byteLength - this.position / 2 : length; const arr = new Int16Array(length); DataStream.memcpy( arr.buffer, 0, this.buffer, this.byteOffset + this.position, length * arr.BYTES_PER_ELEMENT ); DataStream.arrayToNative(arr, e == null ? this.endianness : e); this.position += arr.byteLength; return arr; } /** * Reads an Int8Array of desired length from the DataStream. * * @param {number} length Number of elements to map. * @return {Object} The read Int8Array. */ readInt8Array(length: number): Int8Array { length = length == null ? this.byteLength - this.position : length; const arr = new Int8Array(length); DataStream.memcpy( arr.buffer, 0, this.buffer, this.byteOffset + this.position, length * arr.BYTES_PER_ELEMENT ); this.position += arr.byteLength; return arr; } /** * Reads a Uint32Array of desired length and endianness from the DataStream. * * @param {number} length Number of elements to map. * @param {?boolean} e Endianness of the data to read. * @return {Object} The read Uint32Array. */ readUint32Array(length: number, e?: boolean): Uint32Array { length = length == null ? this.byteLength - this.position / 4 : length; const arr = new Uint32Array(length); DataStream.memcpy( arr.buffer, 0, this.buffer, this.byteOffset + this.position, length * arr.BYTES_PER_ELEMENT ); DataStream.arrayToNative(arr, e == null ? this.endianness : e); this.position += arr.byteLength; return arr; } /** * Reads a Uint16Array of desired length and endianness from the DataStream. * * @param {number} length Number of elements to map. * @param {?boolean} e Endianness of the data to read. * @return {Object} The read Uint16Array. */ readUint16Array(length: number, e?: boolean): Uint16Array { length = length == null ? this.byteLength - this.position / 2 : length; const arr = new Uint16Array(length); DataStream.memcpy( arr.buffer, 0, this.buffer, this.byteOffset + this.position, length * arr.BYTES_PER_ELEMENT ); DataStream.arrayToNative(arr, e == null ? this.endianness : e); this.position += arr.byteLength; return arr; } /** * Reads a Uint8Array of desired length from the DataStream. * * @param {number} length Number of elements to map. * @return {Object} The read Uint8Array. */ readUint8Array(length: number): Uint8Array { length = length == null ? this.byteLength - this.position : length; const arr = new Uint8Array(length); DataStream.memcpy( arr.buffer, 0, this.buffer, this.byteOffset + this.position, length * arr.BYTES_PER_ELEMENT ); this.position += arr.byteLength; return arr; } /** * Reads a Float64Array of desired length and endianness from the DataStream. * * @param {number} length Number of elements to map. * @param {?boolean} e Endianness of the data to read. * @return {Object} The read Float64Array. */ readFloat64Array(length: number, e?: boolean): Float64Array { length = length == null ? this.byteLength - this.position / 8 : length; const arr = new Float64Array(length); DataStream.memcpy( arr.buffer, 0, this.buffer, this.byteOffset + this.position, length * arr.BYTES_PER_ELEMENT ); DataStream.arrayToNative(arr, e == null ? this.endianness : e); this.position += arr.byteLength; return arr; } /** * Reads a Float32Array of desired length and endianness from the DataStream. * * @param {number} length Number of elements to map. * @param {?boolean} e Endianness of the data to read. * @return {Object} The read Float32Array. */ readFloat32Array(length: number, e?: boolean): Float32Array { length = length == null ? this.byteLength - this.position / 4 : length; const arr = new Float32Array(length); DataStream.memcpy( arr.buffer, 0, this.buffer, this.byteOffset + this.position, length * arr.BYTES_PER_ELEMENT ); DataStream.arrayToNative(arr, e == null ? this.endianness : e); this.position += arr.byteLength; return arr; } /** * Writes an Int32Array of specified endianness to the DataStream. * * @param {Object} arr The array to write. * @param {?boolean} e Endianness of the data to write. */ writeInt32Array(arr: Int32Array | number[], e?: boolean): DataStream { this._realloc(arr.length * 4); if ( arr instanceof Int32Array && (this.byteOffset + this.position) % arr.BYTES_PER_ELEMENT === 0 ) { DataStream.memcpy( this._buffer, this.byteOffset + this.position, arr.buffer, arr.byteOffset, arr.byteLength ); this.mapInt32Array(arr.length, e); } else { // tslint:disable-next-line prefer-for-of for (let i = 0; i < arr.length; i++) { this.writeInt32(arr[i], e); } } return this; } /** * Writes an Int16Array of specified endianness to the DataStream. * * @param {Object} arr The array to write. * @param {?boolean} e Endianness of the data to write. */ writeInt16Array(arr: Int16Array | number[], e?: boolean): DataStream { this._realloc(arr.length * 2); if ( arr instanceof Int16Array && (this.byteOffset + this.position) % arr.BYTES_PER_ELEMENT === 0 ) { DataStream.memcpy( this._buffer, this.byteOffset + this.position, arr.buffer, arr.byteOffset, arr.byteLength ); this.mapInt16Array(arr.length, e); } else { // tslint:disable-next-line prefer-for-of for (let i = 0; i < arr.length; i++) { this.writeInt16(arr[i], e); } } return this; } /** * Writes an Int8Array to the DataStream. * * @param {Object} arr The array to write. */ writeInt8Array(arr: Int8Array | number[]): DataStream { this._realloc(arr.length); if ( arr instanceof Int8Array && (this.byteOffset + this.position) % arr.BYTES_PER_ELEMENT === 0 ) { DataStream.memcpy( this._buffer, this.byteOffset + this.position, arr.buffer, arr.byteOffset, arr.byteLength ); this.mapInt8Array(arr.length); } else { // tslint:disable-next-line prefer-for-of for (let i = 0; i < arr.length; i++) { this.writeInt8(arr[i]); } } return this; } /** * Writes a Uint32Array of specified endianness to the DataStream. * * @param {Object} arr The array to write. * @param {?boolean} e Endianness of the data to write. */ writeUint32Array(arr: Uint32Array | number[], e?: boolean): DataStream { this._realloc(arr.length * 4); if ( arr instanceof Uint32Array && (this.byteOffset + this.position) % arr.BYTES_PER_ELEMENT === 0 ) { DataStream.memcpy( this._buffer, this.byteOffset + this.position, arr.buffer, arr.byteOffset, arr.byteLength ); this.mapUint32Array(arr.length, e); } else { // tslint:disable-next-line prefer-for-of for (let i = 0; i < arr.length; i++) { this.writeUint32(arr[i], e); } } return this; } /** * Writes a Uint16Array of specified endianness to the DataStream. * * @param {Object} arr The array to write. * @param {?boolean} e Endianness of the data to write. */ writeUint16Array(arr: Uint16Array | number[], e?: boolean): DataStream { this._realloc(arr.length * 2); if ( arr instanceof Uint16Array && (this.byteOffset + this.position) % arr.BYTES_PER_ELEMENT === 0 ) { DataStream.memcpy( this._buffer, this.byteOffset + this.position, arr.buffer, arr.byteOffset, arr.byteLength ); this.mapUint16Array(arr.length, e); } else { // tslint:disable-next-line prefer-for-of for (let i = 0; i < arr.length; i++) { this.writeUint16(arr[i], e); } } return this; } /** * Writes a Uint8Array to the DataStream. * * @param {Object} arr The array to write. */ writeUint8Array(arr: Uint8Array | number[]): DataStream { this._realloc(arr.length); if ( arr instanceof Uint8Array && (this.byteOffset + this.position) % arr.BYTES_PER_ELEMENT === 0 ) { DataStream.memcpy( this._buffer, this.byteOffset + this.position, arr.buffer, arr.byteOffset, arr.byteLength ); this.mapUint8Array(arr.length); } else { // tslint:disable-next-line prefer-for-of for (let i = 0; i < arr.length; i++) { this.writeUint8(arr[i]); } } return this; } /** * Writes a Float64Array of specified endianness to the DataStream. * * @param {Object} arr The array to write. * @param {?boolean} e Endianness of the data to write. */ writeFloat64Array(arr: Float64Array | number[], e?: boolean): DataStream { this._realloc(arr.length * 8); if ( arr instanceof Float64Array && (this.byteOffset + this.position) % arr.BYTES_PER_ELEMENT === 0 ) { DataStream.memcpy( this._buffer, this.byteOffset + this.position, arr.buffer, arr.byteOffset, arr.byteLength ); this.mapFloat64Array(arr.length, e); } else { // tslint:disable-next-line prefer-for-of for (let i = 0; i < arr.length; i++) { this.writeFloat64(arr[i], e); } } return this; } /** * Writes a Float32Array of specified endianness to the DataStream. * * @param {Object} arr The array to write. * @param {?boolean} e Endianness of the data to write. */ writeFloat32Array(arr: Float32Array | number[], e?: boolean): DataStream { this._realloc(arr.length * 4); if ( arr instanceof Float32Array && (this.byteOffset + this.position) % arr.BYTES_PER_ELEMENT === 0 ) { DataStream.memcpy( this._buffer, this.byteOffset + this.position, arr.buffer, arr.byteOffset, arr.byteLength ); this.mapFloat32Array(arr.length, e); } else { // tslint:disable-next-line prefer-for-of for (let i = 0; i < arr.length; i++) { this.writeFloat32(arr[i], e); } } return this; } /** * Reads a 32-bit int from the DataStream with the desired endianness. * * @param {?boolean} e Endianness of the number. * @return {number} The read number. */ readInt32(e?: boolean): number { const v = this._dataView.getInt32( this.position, e == null ? this.endianness : e ); this.position += 4; return v; } /** * Reads a 16-bit int from the DataStream with the desired endianness. * * @param {?boolean} e Endianness of the number. * @return {number} The read number. */ readInt16(e?: boolean): number { const v = this._dataView.getInt16( this.position, e == null ? this.endianness : e ); this.position += 2; return v; } /** * Reads an 8-bit int from the DataStream. * * @return {number} The read number. */ readInt8(): number { const v = this._dataView.getInt8(this.position); this.position += 1; return v; } /** * Reads a 32-bit unsigned int from the DataStream with the desired endianness. * * @param {?boolean} e Endianness of the number. * @return {number} The read number. */ readUint32(e?: boolean): number { const v = this._dataView.getUint32( this.position, e == null ? this.endianness : e ); this.position += 4; return v; } /** * Reads a 16-bit unsigned int from the DataStream with the desired endianness. * * @param {?boolean} e Endianness of the number. * @return {number} The read number. */ readUint16(e?: boolean): number { const v = this._dataView.getUint16( this.position, e == null ? this.endianness : e ); this.position += 2; return v; } /** * Reads an 8-bit unsigned int from the DataStream. * * @return {number} The read number. */ readUint8(): number { const v = this._dataView.getUint8(this.position); this.position += 1; return v; } /** * Reads a 32-bit float from the DataStream with the desired endianness. * * @param {?boolean} e Endianness of the number. * @return {number} The read number. */ readFloat32(e?: boolean): number { const v = this._dataView.getFloat32( this.position, e == null ? this.endianness : e ); this.position += 4; return v; } /** * Reads a 64-bit float from the DataStream with the desired endianness. * * @param {?boolean} e Endianness of the number. * @return {number} The read number. */ readFloat64(e?: boolean): number { const v = this._dataView.getFloat64( this.position, e == null ? this.endianness : e ); this.position += 8; return v; } /** * Writes a 32-bit int to the DataStream with the desired endianness. * * @param {number} v Number to write. * @param {?boolean} e Endianness of the number. */ writeInt32(v: number, e?: boolean): DataStream { this._realloc(4); this._dataView.setInt32( this.position, v, e == null ? this.endianness : e ); this.position += 4; return this; } /** * Writes a 16-bit int to the DataStream with the desired endianness. * * @param {number} v Number to write. * @param {?boolean} e Endianness of the number. */ writeInt16(v: number, e?: boolean): DataStream { this._realloc(2); this._dataView.setInt16( this.position, v, e == null ? this.endianness : e ); this.position += 2; return this; } /** * Writes an 8-bit int to the DataStream. * * @param {number} v Number to write. */ writeInt8(v: number): DataStream { this._realloc(1); this._dataView.setInt8(this.position, v); this.position += 1; return this; } /** * Writes a 32-bit unsigned int to the DataStream with the desired endianness. * * @param {number} v Number to write. * @param {?boolean} e Endianness of the number. */ writeUint32(v: number, e?: boolean): DataStream { this._realloc(4); this._dataView.setUint32( this.position, v, e == null ? this.endianness : e ); this.position += 4; return this; } /** * Writes a 16-bit unsigned int to the DataStream with the desired endianness. * * @param {number} v Number to write. * @param {?boolean} e Endianness of the number. */ writeUint16(v: number, e?: boolean): DataStream { this._realloc(2); this._dataView.setUint16( this.position, v, e == null ? this.endianness : e ); this.position += 2; return this; } /** * Writes an 8-bit unsigned int to the DataStream. * * @param {number} v Number to write. */ writeUint8(v: number): DataStream { this._realloc(1); this._dataView.setUint8(this.position, v); this.position += 1; return this; } /** * Writes a 32-bit float to the DataStream with the desired endianness. * * @param {number} v Number to write. * @param {?boolean} e Endianness of the number. */ writeFloat32(v: number, e?: boolean): DataStream { this._realloc(4); this._dataView.setFloat32( this.position, v, e == null ? this.endianness : e ); this.position += 4; return this; } /** * Writes a 64-bit float to the DataStream with the desired endianness. * * @param {number} v Number to write. * @param {?boolean} e Endianness of the number. */ writeFloat64(v: number, e?: boolean): DataStream { this._realloc(8); this._dataView.setFloat64( this.position, v, e == null ? this.endianness : e ); this.position += 8; return this; } /** * Native endianness. Either DataStream.BIG_ENDIAN or DataStream.LITTLE_ENDIAN * depending on the platform endianness. * * @type {boolean} */ static readonly endianness: boolean = new Int8Array( new Int16Array([1]).buffer )[0] > 0; /** * Copies byteLength bytes from the src buffer at srcOffset to the * dst buffer at dstOffset. * * @param {Object} dst Destination ArrayBuffer to write to. * @param {number} dstOffset Offset to the destination ArrayBuffer. * @param {Object} src Source ArrayBuffer to read from. * @param {number} srcOffset Offset to the source ArrayBuffer. * @param {number} byteLength Number of bytes to copy. */ static memcpy( dst: ArrayBufferLike, dstOffset: number, src: ArrayBuffer, srcOffset: number, byteLength: number ) { const dstU8 = new Uint8Array(dst, dstOffset, byteLength); const srcU8 = new Uint8Array(src, srcOffset, byteLength); dstU8.set(srcU8); } /** * Converts array to native endianness in-place. * * @param {Object} array Typed array to convert. * @param {boolean} arrayIsLittleEndian True if the data in the array is * little-endian. Set false for big-endian. * @return {Object} The converted typed array. */ static arrayToNative(array, arrayIsLittleEndian: boolean) { if (arrayIsLittleEndian === this.endianness) { return array; } else { return this.flipArrayEndianness(array); // ??? } } /** * Converts native endianness array to desired endianness in-place. * * @param {Object} array Typed array to convert. * @param {boolean} littleEndian True if the converted array should be * little-endian. Set false for big-endian. * @return {Object} The converted typed array. */ static nativeToEndian(array: TypedArray, littleEndian: boolean) { if (this.endianness === littleEndian) { return array; } else { return this.flipArrayEndianness(array); } } /** * Flips typed array endianness in-place. * * @param {Object} array Typed array to flip. * @return {Object} The converted typed array. */ static flipArrayEndianness(array: TypedArray) { const u8 = new Uint8Array( array.buffer, array.byteOffset, array.byteLength ); for (let i = 0; i < array.byteLength; i += array.BYTES_PER_ELEMENT) { for ( // tslint:disable-next-line one-variable-per-declaration let j = i + array.BYTES_PER_ELEMENT - 1, k = i; j > k; j--, k++ ) { const tmp = u8[k]; u8[k] = u8[j]; u8[j] = tmp; } } return array; } /** * Creates an array from an array of character codes. * Uses String.fromCharCode in chunks for memory efficiency and then concatenates * the resulting string chunks. * * @param {TypedArray} array Array of character codes. * @return {string} String created from the character codes. */ static createStringFromArray(array: TypedArray) { const chunkSize = 0x8000; const chunks = []; for (let i = 0; i < array.length; i += chunkSize) { chunks.push( String.fromCharCode.apply( null, array.subarray(i, i + chunkSize) ) ); } return chunks.join(""); } /** * Seek position where DataStream#readStruct ran into a problem. * Useful for debugging struct parsing. * * @type {number} */ failurePosition = 0; /** * Reads a struct of data from the DataStream. The struct is defined as * a flat array of [name, type]-pairs. See the example below: * * ds.readStruct([ * 'headerTag', 'uint32', // Uint32 in DataStream endianness. * 'headerTag2', 'uint32be', // Big-endian Uint32. * 'headerTag3', 'uint32le', // Little-endian Uint32. * 'array', ['[]', 'uint32', 16], // Uint32Array of length 16. * 'array2Length', 'uint32', * 'array2', ['[]', 'uint32', 'array2Length'] // Uint32Array of length array2Length * ]); * * The possible values for the type are as follows: * * // Number types * * // Unsuffixed number types use DataStream endianness. * // To explicitly specify endianness, suffix the type with * // 'le' for little-endian or 'be' for big-endian, * // e.g. 'int32be' for big-endian int32. * * 'uint8' -- 8-bit unsigned int * 'uint16' -- 16-bit unsigned int * 'uint32' -- 32-bit unsigned int * 'int8' -- 8-bit int * 'int16' -- 16-bit int * 'int32' -- 32-bit int * 'float32' -- 32-bit float * 'float64' -- 64-bit float * * // String types * 'cstring' -- ASCII string terminated by a zero byte. * 'string:N' -- ASCII string of length N, where N is a literal integer. * 'string:variableName' -- ASCII string of length $variableName, * where 'variableName' is a previously parsed number in the current struct. * 'string,CHARSET:N' -- String of byteLength N encoded with given CHARSET. * 'u16string:N' -- UCS-2 string of length N in DataStream endianness. * 'u16stringle:N' -- UCS-2 string of length N in little-endian. * 'u16stringbe:N' -- UCS-2 string of length N in big-endian. * * // Complex types * [name, type, name_2, type_2, ..., name_N, type_N] -- Struct * function(dataStream, struct) {} -- Callback function to read and return data. * {get: function(dataStream, struct) {}, * set: function(dataStream, struct) {}} * -- Getter/setter functions to read and return data, handy for using the same * struct definition for reading and writing structs. * ['[]', type, length] -- Array of given type and length. The length can be either * a number, a string that references a previously-read * field, or a callback function(struct, dataStream, type){}. * If length is '*', reads in as many elements as it can. * * @param {Object} structDefinition Struct definition object. * @return {Object} The read struct. Null if failed to read struct. * * @deprecated use DataStream.read/write(TypeDef) instead of readStruct/writeStruct */ readStruct(structDefinition: StructRead[]): object { const struct = {}; let t: StructRead; let v; const p = this.position; for (let i = 0; i < structDefinition.length; i += 2) { t = structDefinition[i + 1]; v = this.readType(t, struct); if (v == null) { if (this.failurePosition === 0) { this.failurePosition = this.position; } this.position = p; return null; } struct[structDefinition[i] as string] = v; } return struct; } /** ex: * const def = [ * ["obj", [["num", "Int8"], * ["greet", "Utf8WithLen"], * ["a1", "Int16*"]] * ], * ["a2", "Uint16*"] * ]; * const o = {obj: { * num: 5, * greet: "Xin chào", * a1: [-3, 0, 4, 9, 0x7FFF], * }, * a2: [3, 0, 4, 9, 0xFFFF] * }); * ds.write(def, o); * expect: new DataStream(ds.buffer).read(def) deepEqual o */ read(def: TypeDef): object { const o = {}; let d: TypeDef1; for (d of def) { const v = d[0]; const t = d[1]; if (typeof t === "string") { if (t.endsWith("*")) { const len = this.readUint16(); o[v] = this["read" + t.substr(0, t.length - 1) + "Array"]( len ); } else { o[v] = this["read" + t](); } } else { o[v] = this.read(t); } } return o; } /** ex: * const def = [ * ["obj", [["num", "Int8"], * ["greet", "Utf8WithLen"], * ["a1", "Int16*"]] * ], * ["a2", "Uint16*"] * ]; * const o = {obj: { * num: 5, * greet: "Xin chào", * a1: [-3, 0, 4, 9, 0x7FFF], * }, * a2: [3, 0, 4, 9, 0xFFFF] * }); * ds.write(def, o); * expect: new DataStream(ds.buffer).read(def) deepEqual o */ write(def: TypeDef, o: object): DataStream { let d: TypeDef1; for (d of def) { const v = d[0]; const t = d[1]; if (typeof t === "string") { if (t.endsWith("*")) { const arr: TypedArray | number[] = o[v]; this.writeUint16(arr.length); this["write" + t.substr(0, t.length - 1) + "Array"](arr); } else { this["write" + t](o[v]); } } else { this.write(t, o[v]); } } return this; } /** convenient method to write data. ex, instead of write data as in jsdoc of `write` method, we can: * const def = [ * ["Int8", "Utf8WithLen", "Int16*"], * "Uint16*" * ]; * const a = [ * [5, "Xin chào", [-3, 0, 4, 9, 0x7FFF]], * [3, 0, 4, 9, 0xFFFF] * ]; * ds.writeArray(def, a) */ writeArray(def: TypeArr, a: any[]): DataStream { let t: Type | TypeArr; let i: number; for (i = 0; i < def.length; i++) { t = def[i]; if (typeof t === "string") { if (t.endsWith("*")) { const arr: TypedArray | number[] = a[i]; this.writeUint16(arr.length); this["write" + t.substr(0, t.length - 1) + "Array"](arr); } else { this["write" + t](a[i]); } } else { this.writeArray(t, a[i]); } } return this; } /** * Read UCS-2 string of desired length and endianness from the DataStream. * * @param {number} length The length of the string to read. * @param {boolean} endianness The endianness of the string data in the DataStream. * @return {string} The read string. */ readUCS2String(length: number, endianness?: boolean): string { return DataStream.createStringFromArray( this.readUint16Array(length, endianness) ); } /** * Write a UCS-2 string of desired endianness to the DataStream. The * lengthOverride argument lets you define the number of characters to write. * If the string is shorter than lengthOverride, the extra space is padded with * zeroes. * * @param {string} str The string to write. * @param {?boolean} endianness The endianness to use for the written string data. * @param {?number} lengthOverride The number of characters to write. */ writeUCS2String( str: string, endianness?: boolean, lengthOverride?: number ): DataStream { if (lengthOverride == null) { lengthOverride = str.length; } let i = 0; for (; i < str.length && i < lengthOverride; i++) { this.writeUint16(str.charCodeAt(i), endianness); } for (; i < lengthOverride; i++) { this.writeUint16(0); } return this; } /** * Read a string of desired length and encoding from the DataStream. * * @param {number} length The length of the string to read in bytes. * @param {?string} encoding The encoding of the string data in the DataStream. * Defaults to ASCII. * @return {string} The read string. */ readString(length: number, encoding?: string): string { if (encoding == null || encoding === "ASCII") { return DataStream.createStringFromArray( this.mapUint8Array( length == null ? this.byteLength - this.position : length ) ); } else { return new TextDecoder(encoding).decode(this.mapUint8Array(length)); } } /** * Writes a string of desired length and encoding to the DataStream. * * @param {string} s The string to write. * @param {?string} encoding The encoding for the written string data. * Defaults to ASCII. * @param {?number} length The number of characters to write. */ writeString(s: string, encoding?: string, length?: number): DataStream { if (encoding == null || encoding === "ASCII") { if (length != null) { let i: number; const len = Math.min(s.length, length); for (i = 0; i < len; i++) { this.writeUint8(s.charCodeAt(i)); } for (; i < length; i++) { this.writeUint8(0); } } else { for (let i = 0; i < s.length; i++) { this.writeUint8(s.charCodeAt(i)); } } } else { this.writeUint8Array( new TextEncoder(encoding).encode(s.substring(0, length)) ); } return this; } /** writeUint16(utf8 length of `s`) then write utf8 `s` */ writeUtf8WithLen(s: string): DataStream { const arr = new TextEncoder("utf-8").encode(s); return this.writeUint16(arr.length).writeUint8Array(arr); } /** readUint16 into `len` then read `len` Uint8 then parse into the result utf8 string */ readUtf8WithLen(): string { const len = this.readUint16(); return new TextDecoder("utf-8").decode(this.mapUint8Array(len)); } /** * Read null-terminated string of desired length from the DataStream. Truncates * the returned string so that the null byte is not a part of it. * * @param {?number} length The length of the string to read. * @return {string} The read string. */ readCString(length?: number): string { const blen = this.byteLength - this.position; const u8 = new Uint8Array( this._buffer, this._byteOffset + this.position ); let len = blen; if (length != null) { len = Math.min(length, blen); } let i = 0; for (; i < len && u8[i] !== 0; i++) { // find first zero byte } const s = DataStream.createStringFromArray(this.mapUint8Array(i)); if (length != null) { th