UNPKG

datapilot-cli

Version:

Enterprise-grade streaming multi-format data analysis with comprehensive statistical insights and intelligent relationship detection - supports CSV, JSON, Excel, TSV, Parquet - memory-efficient, cross-platform

69 lines 2.18 kB
/** * Multivariate Outlier Detection Implementation * * Features: * - Mahalanobis distance-based outlier detection * - Chi-squared distribution for threshold determination * - Robust covariance estimation options * - Detailed outlier profiling and interpretation * - Variable contribution analysis for outlier understanding */ import type { MultivariateOutlierAnalysis } from '../eda/types'; /** * Main multivariate outlier analyzer */ export declare class MultivariateOutlierAnalyzer { private static readonly MIN_VARIABLES; private static readonly MIN_OBSERVATIONS; private static readonly MAX_VARIABLES; private static readonly OUTLIER_THRESHOLD; /** * Perform complete multivariate outlier analysis */ static analyze(data: (string | number | null | undefined)[][], headers: string[], numericalColumnIndices: number[], sampleSize: number): MultivariateOutlierAnalysis; /** * Check if outlier detection is applicable */ private static checkApplicability; /** * Extract numerical data and handle missing values */ private static extractNumericData; /** * Detect outliers using Mahalanobis distance */ private static detectOutliers; /** * Calculate critical value for chi-squared distribution */ private static calculateCriticalValue; /** * Determine outlier severity based on p-value */ private static determineSeverity; /** * Calculate variable contributions to outlier score */ private static calculateVariableContributions; /** * Interpret outlier characteristics */ private static interpretOutlier; /** * Analyze severity distribution of outliers */ private static analyzeSeverityDistribution; /** * Analyze which variables are most affected by outliers */ private static analyzeAffectedVariables; /** * Generate recommendations based on outlier analysis */ private static generateRecommendations; /** * Create non-applicable outlier result */ private static createNonApplicableResult; } //# sourceMappingURL=outlier-analyzer.d.ts.map