datapilot-cli
Version:
Enterprise-grade streaming multi-format data analysis with comprehensive statistical insights and intelligent relationship detection - supports CSV, JSON, Excel, TSV, Parquet - memory-efficient, cross-platform
69 lines • 2.18 kB
TypeScript
/**
* Multivariate Outlier Detection Implementation
*
* Features:
* - Mahalanobis distance-based outlier detection
* - Chi-squared distribution for threshold determination
* - Robust covariance estimation options
* - Detailed outlier profiling and interpretation
* - Variable contribution analysis for outlier understanding
*/
import type { MultivariateOutlierAnalysis } from '../eda/types';
/**
* Main multivariate outlier analyzer
*/
export declare class MultivariateOutlierAnalyzer {
private static readonly MIN_VARIABLES;
private static readonly MIN_OBSERVATIONS;
private static readonly MAX_VARIABLES;
private static readonly OUTLIER_THRESHOLD;
/**
* Perform complete multivariate outlier analysis
*/
static analyze(data: (string | number | null | undefined)[][], headers: string[], numericalColumnIndices: number[], sampleSize: number): MultivariateOutlierAnalysis;
/**
* Check if outlier detection is applicable
*/
private static checkApplicability;
/**
* Extract numerical data and handle missing values
*/
private static extractNumericData;
/**
* Detect outliers using Mahalanobis distance
*/
private static detectOutliers;
/**
* Calculate critical value for chi-squared distribution
*/
private static calculateCriticalValue;
/**
* Determine outlier severity based on p-value
*/
private static determineSeverity;
/**
* Calculate variable contributions to outlier score
*/
private static calculateVariableContributions;
/**
* Interpret outlier characteristics
*/
private static interpretOutlier;
/**
* Analyze severity distribution of outliers
*/
private static analyzeSeverityDistribution;
/**
* Analyze which variables are most affected by outliers
*/
private static analyzeAffectedVariables;
/**
* Generate recommendations based on outlier analysis
*/
private static generateRecommendations;
/**
* Create non-applicable outlier result
*/
private static createNonApplicableResult;
}
//# sourceMappingURL=outlier-analyzer.d.ts.map