UNPKG

datapilot-cli

Version:

Enterprise-grade streaming multi-format data analysis with comprehensive statistical insights and intelligent relationship detection - supports CSV, JSON, Excel, TSV, Parquet - memory-efficient, cross-platform

109 lines 3.77 kB
/** * Intelligent Algorithm Selection Analyzer * Advanced algorithm selection engine that provides sophisticated, dataset-aware ML recommendations * * Risk-averse implementation strategy: * - Incremental analysis with comprehensive fallbacks * - Multi-criteria decision framework with uncertainty handling * - Progressive enhancement of recommendation sophistication * - Backward compatibility with existing systems */ import type { Section1Result } from '../../overview/types'; import type { Section2Result } from '../../quality/types'; import type { Section3Result } from '../../eda/types'; import type { DatasetComplexityProfile } from '../advanced-characterization/types'; import type { AlgorithmSelectionProfile, AlgorithmSelectionConfig, SelectionProgress } from './types'; /** * Main analyzer class for intelligent algorithm selection */ export declare class IntelligentAlgorithmSelectionAnalyzer { private config; private warnings; private startTime; private progress; constructor(config?: Partial<AlgorithmSelectionConfig>); /** * Main analysis method - performs comprehensive algorithm selection */ analyze(section1Result: Section1Result, section2Result: Section2Result, section3Result: Section3Result, complexityProfile: DatasetComplexityProfile, progressCallback?: (progress: SelectionProgress) => void): Promise<AlgorithmSelectionProfile>; /** * Performs incremental algorithm selection with comprehensive error handling */ private performIncrementalSelection; /** * Generate candidate algorithms based on dataset characteristics and task requirements */ private generateCandidateAlgorithms; /** * Perform multi-criteria evaluation of candidate algorithms */ private performMultiCriteriaEvaluation; /** * Generate performance predictions for selected algorithms */ private generatePerformancePredictions; /** * Initialize configuration with defaults */ private initializeConfig; /** * Initialize progress tracking */ private initializeProgress; /** * Reset analysis state for new analysis */ private resetAnalysisState; /** * Update progress and notify callback */ private updateProgress; /** * Estimate remaining time based on progress */ private estimateTimeRemaining; /** * Calculate total analysis steps */ private calculateTotalSteps; /** * Validate inputs before analysis */ private validateInputs; /** * Extract decision context from all input sources */ private extractDecisionContext; /** * Add warning to collection */ private addWarning; /** * Handle analysis errors with proper categorization */ private handleAnalysisError; /** * Generate selection metadata */ private generateSelectionMetadata; private inferTaskType; private generateClassificationCandidates; private generateRegressionCandidates; private generateClusteringCandidates; private generateTimeSeriesCandidates; private generateAnomalyDetectionCandidates; private generateGeneralCandidates; private filterCandidatesByConstraints; private getFallbackCandidates; private evaluateCandidate; private performBasicEvaluation; private predictAlgorithmPerformance; private generateTheoreticalPredictions; private performRiskAssessment; private generateEnsembleRecommendations; private generateHyperparameterGuidance; private developImplementationStrategy; private generateSelectionReasoning; private assessDataQuality; } //# sourceMappingURL=intelligent-algorithm-selection-analyzer.d.ts.map