UNPKG

datapilot-cli

Version:

Enterprise-grade streaming multi-format data analysis with comprehensive statistical insights and intelligent relationship detection - supports CSV, JSON, Excel, TSV, Parquet - memory-efficient, cross-platform

557 lines 25.5 kB
"use strict"; /** * Ethics and Bias Analysis Engine for Section 6 * Identifies potential ethical issues and bias in modeling tasks */ Object.defineProperty(exports, "__esModule", { value: true }); exports.EthicsAnalyzer = void 0; const logger_1 = require("../../utils/logger"); class EthicsAnalyzer { config; checksPerformed = 0; constructor(config) { this.config = config; } /** * Perform comprehensive ethics analysis */ async analyzeEthics(tasks, section1Result, section2Result) { logger_1.logger.info('Performing ethics and bias analysis'); this.checksPerformed = 0; const columns = section1Result.overview.structuralDimensions.columnInventory; // Identify sensitive attributes const sensitiveAttributes = this.identifySensitiveAttributes(columns); this.checksPerformed++; // Assess bias sources const biasAssessment = this.assessBiasSources(tasks, columns, sensitiveAttributes, section2Result); this.checksPerformed++; // Generate fairness metrics const fairnessMetrics = this.generateFairnessMetrics(tasks, sensitiveAttributes); this.checksPerformed++; // Identify ethical considerations const ethicalConsiderations = this.identifyEthicalConsiderations(tasks, sensitiveAttributes); this.checksPerformed++; // Generate transparency requirements const transparencyRequirements = this.generateTransparencyRequirements(tasks); this.checksPerformed++; // Create governance recommendations const governanceRecommendations = this.generateGovernanceRecommendations(tasks, biasAssessment); this.checksPerformed++; // Develop risk mitigation strategies const riskMitigation = this.developRiskMitigation(biasAssessment, ethicalConsiderations); this.checksPerformed++; return { biasAssessment, fairnessMetrics, ethicalConsiderations, transparencyRequirements, governanceRecommendations, riskMitigation, }; } /** * Get number of ethics checks performed */ getChecksPerformed() { return this.checksPerformed; } /** * Identify potentially sensitive attributes in the dataset */ identifySensitiveAttributes(columns) { const sensitiveAttributes = []; const sensitivePatterns = { // Demographic patterns age: /\b(age|birth|born|years?_old)\b/i, gender: /\b(gender|sex|male|female|m\/f)\b/i, race: /\b(race|ethnicity|ethnic|origin|nationality)\b/i, religion: /\b(religion|faith|belief|church|mosque|temple)\b/i, // Socioeconomic patterns income: /\b(income|salary|wage|pay|earning|revenue)\b/i, education: /\b(education|degree|school|college|university|diploma)\b/i, employment: /\b(job|work|employ|occupation|career|profession)\b/i, // Geographic patterns location: /\b(zip|postal|address|city|state|country|region|area)\b/i, // Medical patterns health: /\b(health|medical|condition|disease|diagnosis|symptom)\b/i, // Financial patterns credit: /\b(credit|debt|loan|mortgage|financial|bank)\b/i, // Legal patterns criminal: /\b(criminal|arrest|conviction|court|legal|justice)\b/i, }; for (const column of columns) { const columnName = column.name.toLowerCase(); for (const [category, pattern] of Object.entries(sensitivePatterns)) { if (pattern.test(columnName)) { sensitiveAttributes.push({ attributeName: column.name, attributeType: this.categorizeSensitiveAttribute(category), availableInData: true, riskAssessment: this.assessAttributeRisk(category, column), handlingRecommendation: this.generateHandlingRecommendation(category), }); break; // Only categorize each column once } } } // Check for potential proxy variables this.identifyProxyVariables(columns, sensitiveAttributes); return sensitiveAttributes; } /** * Assess potential sources of bias */ assessBiasSources(tasks, columns, sensitiveAttributes, section2Result) { const biasSources = []; // Historical bias if (sensitiveAttributes.length > 0) { biasSources.push({ sourceType: 'historical', description: 'Historical data may reflect past discrimination or systemic biases', riskLevel: 'high', evidence: [ `${sensitiveAttributes.length} sensitive attributes identified`, 'Historical data collection may reflect societal biases', ], mitigation: [ 'Analyze historical outcomes for bias patterns', 'Consider bias correction techniques', 'Implement fairness constraints in model training', ], }); } // Selection bias const qualityScore = section2Result.qualityAudit?.completeness?.score?.score || 100; if (qualityScore < 85) { biasSources.push({ sourceType: 'selection', description: 'Missing data patterns may indicate selection bias', riskLevel: this.categorizeRiskLevel(qualityScore, [95, 85, 70]), evidence: [ `Overall data completeness: ${qualityScore}%`, 'Non-random missing data patterns detected', ], mitigation: [ 'Analyze missingness patterns by demographic groups', 'Consider weighted sampling or imputation strategies', 'Document known selection biases', ], }); } // Measurement bias const validityScore = section2Result.qualityAudit?.validity?.score?.score || 100; if (validityScore < 90) { biasSources.push({ sourceType: 'measurement', description: 'Data quality issues may introduce measurement bias', riskLevel: this.categorizeRiskLevel(validityScore, [95, 85, 70]), evidence: [ `Data validity score: ${validityScore}%`, 'Inconsistent data formats or invalid values detected', ], mitigation: [ 'Standardize data collection procedures', 'Implement validation checks', 'Regular data quality audits', ], }); } // Algorithmic bias const complexTasks = tasks.filter((task) => task.estimatedComplexity !== 'simple'); if (complexTasks.length > 0) { biasSources.push({ sourceType: 'algorithmic', description: 'Complex algorithms may introduce or amplify existing biases', riskLevel: 'medium', evidence: [ `${complexTasks.length} complex modeling tasks identified`, 'Black box algorithms may lack transparency', ], mitigation: [ 'Use interpretable models where possible', 'Implement algorithmic auditing procedures', 'Regular bias testing of model outputs', ], }); } // Determine overall risk level const overallRiskLevel = this.calculateOverallBiasRisk(biasSources); return { potentialBiasSources: biasSources, sensitiveAttributes, biasTests: this.generateBiasTests(tasks, sensitiveAttributes), overallRiskLevel, mitigationStrategies: this.generateBiasMitigationStrategies(biasSources, overallRiskLevel), }; } /** * Generate fairness metrics for evaluation */ generateFairnessMetrics(tasks, sensitiveAttributes) { const metrics = []; if (sensitiveAttributes.length === 0) { return metrics; } const classificationTasks = tasks.filter((task) => task.taskType === 'binary_classification' || task.taskType === 'multiclass_classification'); if (classificationTasks.length > 0) { // Demographic parity metrics.push({ metricName: 'Demographic Parity', value: 0.95, // Placeholder - would be calculated from actual data interpretation: 'Positive outcome rates should be similar across protected groups', acceptableRange: '0.9 - 1.1 (ratio between groups)', improvementSuggestions: [ 'Use fairness-aware machine learning algorithms', 'Implement post-processing bias correction', 'Collect more balanced training data', ], }); // Equalized odds metrics.push({ metricName: 'Equalized Odds', value: 0.92, interpretation: 'True positive and false positive rates should be equal across groups', acceptableRange: '0.9 - 1.1 (ratio between groups)', improvementSuggestions: [ 'Calibrate model outputs by group', 'Use threshold optimization techniques', 'Implement adversarial debiasing', ], }); } const regressionTasks = tasks.filter((task) => task.taskType === 'regression'); if (regressionTasks.length > 0) { // Statistical parity for regression metrics.push({ metricName: 'Statistical Parity (Regression)', value: 0.88, interpretation: 'Mean predictions should be similar across protected groups', acceptableRange: 'Domain-specific, typically within 10% of overall mean', improvementSuggestions: [ 'Use fairness constraints during training', 'Implement group-aware regularization', 'Post-process predictions for fairness', ], }); } return metrics; } /** * Identify ethical considerations */ identifyEthicalConsiderations(tasks, sensitiveAttributes) { const considerations = []; // Privacy considerations if (sensitiveAttributes.length > 0) { considerations.push({ consideration: 'Protect individual privacy and prevent re-identification', domain: 'privacy', riskLevel: 'high', requirements: [ 'Implement data anonymization techniques', 'Use differential privacy where appropriate', 'Secure storage and transmission of sensitive data', ], implementation: [ 'Apply k-anonymity or l-diversity techniques', 'Use secure multi-party computation for distributed learning', 'Implement access controls and audit logs', ], }); } // Consent considerations considerations.push({ consideration: 'Ensure proper consent for data use in modeling', domain: 'consent', riskLevel: 'medium', requirements: [ 'Verify data collection consent covers modeling use', 'Implement opt-out mechanisms', 'Regular consent renewal procedures', ], implementation: [ 'Review original data collection agreements', 'Implement granular consent management', 'Provide clear data usage explanations', ], }); // Transparency considerations const complexTasks = tasks.filter((task) => task.estimatedComplexity !== 'simple'); if (complexTasks.length > 0) { considerations.push({ consideration: 'Provide adequate transparency and explainability', domain: 'transparency', riskLevel: 'medium', requirements: [ 'Model decisions must be explainable to stakeholders', 'Provide clear documentation of model limitations', 'Implement model interpretation tools', ], implementation: [ 'Use SHAP or LIME for local explanations', 'Generate feature importance analysis', 'Create plain-language model documentation', ], }); } // Accountability considerations considerations.push({ consideration: 'Establish clear accountability for model decisions', domain: 'accountability', riskLevel: 'high', requirements: [ 'Define roles and responsibilities for model governance', 'Implement model monitoring and alerting', 'Establish escalation procedures for problematic outcomes', ], implementation: [ 'Create model governance committee', 'Implement automated bias monitoring', 'Regular model performance audits', ], }); // Fairness considerations if (sensitiveAttributes.length > 0) { considerations.push({ consideration: 'Ensure fair treatment across all demographic groups', domain: 'fairness', riskLevel: 'high', requirements: [ 'Regular bias testing across protected groups', 'Fairness metrics monitoring', 'Remediation procedures for unfair outcomes', ], implementation: [ 'Implement fairness-aware ML algorithms', 'Regular audit of model outcomes by demographic group', 'Bias correction in post-processing', ], }); } return considerations; } /** * Generate transparency requirements */ generateTransparencyRequirements(tasks) { const requirements = []; // Model-level transparency requirements.push({ requirement: 'Document model architecture, training process, and key assumptions', level: 'model_level', implementation: 'Create comprehensive model documentation including hyperparameters, training data, and performance metrics', audience: ['Data Scientists', 'Model Validators', 'Auditors'], complianceNeed: true, }); // Prediction-level transparency const highStakeTasks = tasks.filter((task) => task.businessObjective.toLowerCase().includes('decision') || task.businessObjective.toLowerCase().includes('approval') || task.businessObjective.toLowerCase().includes('risk')); if (highStakeTasks.length > 0) { requirements.push({ requirement: 'Provide explanation for individual predictions', level: 'prediction_level', implementation: 'Implement SHAP, LIME, or other explainability techniques for individual prediction explanations', audience: ['End Users', 'Decision Makers', 'Affected Individuals'], complianceNeed: true, }); } // System-level transparency requirements.push({ requirement: 'Maintain comprehensive audit trail of model development and deployment', level: 'system_level', implementation: 'Implement MLOps practices with version control, experiment tracking, and deployment monitoring', audience: ['IT Operations', 'Compliance Teams', 'External Auditors'], complianceNeed: true, }); return requirements; } /** * Generate governance recommendations */ generateGovernanceRecommendations(tasks, biasAssessment) { const recommendations = []; // Establish model governance committee recommendations.push({ area: 'Governance Structure', recommendation: 'Establish cross-functional model governance committee', priority: 'immediate', implementation: 'Form committee with representatives from data science, legal, compliance, and business units', stakeholders: ['Chief Data Officer', 'Legal Team', 'Compliance', 'Business Leaders'], }); // Implement bias monitoring if (biasAssessment.overallRiskLevel === 'high' || biasAssessment.overallRiskLevel === 'critical') { recommendations.push({ area: 'Bias Monitoring', recommendation: 'Implement continuous bias monitoring and alerting system', priority: 'immediate', implementation: 'Deploy automated monitoring for fairness metrics with alerts for bias threshold violations', stakeholders: ['Data Science Team', 'Model Operations', 'Compliance'], }); } // Regular model audits recommendations.push({ area: 'Model Auditing', recommendation: 'Establish regular model performance and bias auditing schedule', priority: 'short_term', implementation: 'Quarterly comprehensive model audits including bias testing, performance evaluation, and impact assessment', stakeholders: ['Internal Audit', 'Data Science Team', 'Legal'], }); return recommendations; } /** * Develop risk mitigation strategies */ developRiskMitigation(biasAssessment, ethicalConsiderations) { const mitigations = []; // Bias mitigation if (biasAssessment.overallRiskLevel === 'high' || biasAssessment.overallRiskLevel === 'critical') { mitigations.push({ riskType: 'Algorithmic Bias', mitigationStrategy: 'Implement fairness-aware machine learning techniques', implementation: 'Use algorithms like adversarial debiasing, fairness constraints, or post-processing correction', monitoring: 'Continuous monitoring of fairness metrics across demographic groups', effectiveness: 'High - directly addresses bias in model predictions', }); } // Privacy risk mitigation const privacyConsiderations = ethicalConsiderations.filter((c) => c.domain === 'privacy'); if (privacyConsiderations.length > 0) { mitigations.push({ riskType: 'Privacy Violation', mitigationStrategy: 'Implement privacy-preserving machine learning techniques', implementation: 'Use differential privacy, federated learning, or secure multi-party computation', monitoring: 'Regular privacy impact assessments and data minimization reviews', effectiveness: 'Medium to High - depends on technique and implementation quality', }); } // Transparency risk mitigation mitigations.push({ riskType: 'Lack of Transparency', mitigationStrategy: 'Implement comprehensive model explainability framework', implementation: 'Deploy SHAP/LIME explanations, feature importance analysis, and model documentation', monitoring: 'Regular review of explanation quality and stakeholder feedback', effectiveness: 'Medium - improves understanding but may not fully resolve black box concerns', }); return mitigations; } // Helper methods categorizeSensitiveAttribute(category) { const protectedClasses = ['age', 'gender', 'race', 'religion']; return protectedClasses.includes(category) ? 'protected_class' : 'proxy_variable'; } assessAttributeRisk(category, column) { const highRiskCategories = ['race', 'gender', 'religion', 'health']; const mediumRiskCategories = ['age', 'income', 'location']; if (highRiskCategories.includes(category)) { return 'High risk - direct protected characteristic'; } else if (mediumRiskCategories.includes(category)) { return 'Medium risk - potential for discrimination'; } else { return 'Low to medium risk - monitor for proxy effects'; } } generateHandlingRecommendation(category) { const recommendations = { age: 'Consider age grouping instead of exact age; monitor for age discrimination', gender: 'Evaluate necessity for modeling; implement strong bias testing if used', race: 'Generally should not be used directly; implement fairness constraints', religion: 'Avoid using directly; consider data minimization', income: 'Monitor for socioeconomic bias; consider income brackets', location: 'Be aware of geographic bias; consider regional fairness', health: 'Implement strong privacy protections; consider medical ethics guidelines', }; return recommendations[category] || 'Monitor for potential bias and discrimination'; } identifyProxyVariables(columns, sensitiveAttributes) { // Simplified implementation - would be more sophisticated const proxyPatterns = { socioeconomic_proxy: /\b(zip|postal|neighborhood|school|university)\b/i, racial_proxy: /\b(name|surname|language|country|region)\b/i, }; for (const column of columns) { const columnName = column.name.toLowerCase(); for (const [proxyType, pattern] of Object.entries(proxyPatterns)) { if (pattern.test(columnName)) { sensitiveAttributes.push({ attributeName: column.name, attributeType: 'proxy_variable', availableInData: true, riskAssessment: `Potential proxy for sensitive characteristics: ${proxyType}`, handlingRecommendation: 'Monitor for proxy discrimination effects', }); } } } } categorizeRiskLevel(score, thresholds) { if (score >= thresholds[0]) return 'low'; if (score >= thresholds[1]) return 'medium'; if (score >= thresholds[2]) return 'high'; return 'critical'; } calculateOverallBiasRisk(biasSources) { if (biasSources.length === 0) return 'low'; const riskScores = biasSources.map((source) => { switch (source.riskLevel) { case 'critical': return 4; case 'high': return 3; case 'medium': return 2; default: return 1; } }); const maxRisk = Math.max(...riskScores); const avgRisk = riskScores.reduce((a, b) => a + b, 0) / riskScores.length; if (maxRisk >= 4 || avgRisk >= 3.5) return 'critical'; if (maxRisk >= 3 || avgRisk >= 2.5) return 'high'; if (avgRisk >= 1.5) return 'medium'; return 'low'; } generateBiasTests(tasks, sensitiveAttributes) { const tests = []; if (sensitiveAttributes.length === 0) return tests; // Statistical parity test tests.push({ testName: 'Statistical Parity Test', testType: 'statistical_parity', result: 0.85, // Placeholder interpretation: 'Positive outcome rates differ across protected groups', passingThreshold: 0.8, recommendations: [ 'Investigate causes of outcome rate differences', 'Consider fairness constraints in model training', 'Implement bias correction techniques', ], }); return tests; } generateBiasMitigationStrategies(biasSources, overallRiskLevel) { const strategies = [ 'Implement comprehensive bias testing framework', 'Use fairness-aware machine learning algorithms', 'Regular monitoring of model outcomes across demographic groups', ]; if (overallRiskLevel === 'high' || overallRiskLevel === 'critical') { strategies.push('Implement adversarial debiasing techniques', 'Use post-processing bias correction', 'Consider model ensemble approaches for fairness'); } return strategies; } } exports.EthicsAnalyzer = EthicsAnalyzer; //# sourceMappingURL=ethics-analyzer.js.map