UNPKG

d3

Version:

Data-Driven Documents

1,789 lines (1,568 loc) 587 kB
// https://d3js.org v7.8.3 Copyright 2010-2023 Mike Bostock (function (global, factory) { typeof exports === 'object' && typeof module !== 'undefined' ? factory(exports) : typeof define === 'function' && define.amd ? define(['exports'], factory) : (global = typeof globalThis !== 'undefined' ? globalThis : global || self, factory(global.d3 = global.d3 || {})); })(this, (function (exports) { 'use strict'; var version = "7.8.3"; function ascending$3(a, b) { return a == null || b == null ? NaN : a < b ? -1 : a > b ? 1 : a >= b ? 0 : NaN; } function descending$2(a, b) { return a == null || b == null ? NaN : b < a ? -1 : b > a ? 1 : b >= a ? 0 : NaN; } function bisector(f) { let compare1, compare2, delta; // If an accessor is specified, promote it to a comparator. In this case we // can test whether the search value is (self-) comparable. We can’t do this // for a comparator (except for specific, known comparators) because we can’t // tell if the comparator is symmetric, and an asymmetric comparator can’t be // used to test whether a single value is comparable. if (f.length !== 2) { compare1 = ascending$3; compare2 = (d, x) => ascending$3(f(d), x); delta = (d, x) => f(d) - x; } else { compare1 = f === ascending$3 || f === descending$2 ? f : zero$1; compare2 = f; delta = f; } function left(a, x, lo = 0, hi = a.length) { if (lo < hi) { if (compare1(x, x) !== 0) return hi; do { const mid = (lo + hi) >>> 1; if (compare2(a[mid], x) < 0) lo = mid + 1; else hi = mid; } while (lo < hi); } return lo; } function right(a, x, lo = 0, hi = a.length) { if (lo < hi) { if (compare1(x, x) !== 0) return hi; do { const mid = (lo + hi) >>> 1; if (compare2(a[mid], x) <= 0) lo = mid + 1; else hi = mid; } while (lo < hi); } return lo; } function center(a, x, lo = 0, hi = a.length) { const i = left(a, x, lo, hi - 1); return i > lo && delta(a[i - 1], x) > -delta(a[i], x) ? i - 1 : i; } return {left, center, right}; } function zero$1() { return 0; } function number$3(x) { return x === null ? NaN : +x; } function* numbers(values, valueof) { if (valueof === undefined) { for (let value of values) { if (value != null && (value = +value) >= value) { yield value; } } } else { let index = -1; for (let value of values) { if ((value = valueof(value, ++index, values)) != null && (value = +value) >= value) { yield value; } } } } const ascendingBisect = bisector(ascending$3); const bisectRight = ascendingBisect.right; const bisectLeft = ascendingBisect.left; const bisectCenter = bisector(number$3).center; var bisect = bisectRight; function blur(values, r) { if (!((r = +r) >= 0)) throw new RangeError("invalid r"); let length = values.length; if (!((length = Math.floor(length)) >= 0)) throw new RangeError("invalid length"); if (!length || !r) return values; const blur = blurf(r); const temp = values.slice(); blur(values, temp, 0, length, 1); blur(temp, values, 0, length, 1); blur(values, temp, 0, length, 1); return values; } const blur2 = Blur2(blurf); const blurImage = Blur2(blurfImage); function Blur2(blur) { return function(data, rx, ry = rx) { if (!((rx = +rx) >= 0)) throw new RangeError("invalid rx"); if (!((ry = +ry) >= 0)) throw new RangeError("invalid ry"); let {data: values, width, height} = data; if (!((width = Math.floor(width)) >= 0)) throw new RangeError("invalid width"); if (!((height = Math.floor(height !== undefined ? height : values.length / width)) >= 0)) throw new RangeError("invalid height"); if (!width || !height || (!rx && !ry)) return data; const blurx = rx && blur(rx); const blury = ry && blur(ry); const temp = values.slice(); if (blurx && blury) { blurh(blurx, temp, values, width, height); blurh(blurx, values, temp, width, height); blurh(blurx, temp, values, width, height); blurv(blury, values, temp, width, height); blurv(blury, temp, values, width, height); blurv(blury, values, temp, width, height); } else if (blurx) { blurh(blurx, values, temp, width, height); blurh(blurx, temp, values, width, height); blurh(blurx, values, temp, width, height); } else if (blury) { blurv(blury, values, temp, width, height); blurv(blury, temp, values, width, height); blurv(blury, values, temp, width, height); } return data; }; } function blurh(blur, T, S, w, h) { for (let y = 0, n = w * h; y < n;) { blur(T, S, y, y += w, 1); } } function blurv(blur, T, S, w, h) { for (let x = 0, n = w * h; x < w; ++x) { blur(T, S, x, x + n, w); } } function blurfImage(radius) { const blur = blurf(radius); return (T, S, start, stop, step) => { start <<= 2, stop <<= 2, step <<= 2; blur(T, S, start + 0, stop + 0, step); blur(T, S, start + 1, stop + 1, step); blur(T, S, start + 2, stop + 2, step); blur(T, S, start + 3, stop + 3, step); }; } // Given a target array T, a source array S, sets each value T[i] to the average // of {S[i - r], …, S[i], …, S[i + r]}, where r = ⌊radius⌋, start <= i < stop, // for each i, i + step, i + 2 * step, etc., and where S[j] is clamped between // S[start] (inclusive) and S[stop] (exclusive). If the given radius is not an // integer, S[i - r - 1] and S[i + r + 1] are added to the sum, each weighted // according to r - ⌊radius⌋. function blurf(radius) { const radius0 = Math.floor(radius); if (radius0 === radius) return bluri(radius); const t = radius - radius0; const w = 2 * radius + 1; return (T, S, start, stop, step) => { // stop must be aligned! if (!((stop -= step) >= start)) return; // inclusive stop let sum = radius0 * S[start]; const s0 = step * radius0; const s1 = s0 + step; for (let i = start, j = start + s0; i < j; i += step) { sum += S[Math.min(stop, i)]; } for (let i = start, j = stop; i <= j; i += step) { sum += S[Math.min(stop, i + s0)]; T[i] = (sum + t * (S[Math.max(start, i - s1)] + S[Math.min(stop, i + s1)])) / w; sum -= S[Math.max(start, i - s0)]; } }; } // Like blurf, but optimized for integer radius. function bluri(radius) { const w = 2 * radius + 1; return (T, S, start, stop, step) => { // stop must be aligned! if (!((stop -= step) >= start)) return; // inclusive stop let sum = radius * S[start]; const s = step * radius; for (let i = start, j = start + s; i < j; i += step) { sum += S[Math.min(stop, i)]; } for (let i = start, j = stop; i <= j; i += step) { sum += S[Math.min(stop, i + s)]; T[i] = sum / w; sum -= S[Math.max(start, i - s)]; } }; } function count$1(values, valueof) { let count = 0; if (valueof === undefined) { for (let value of values) { if (value != null && (value = +value) >= value) { ++count; } } } else { let index = -1; for (let value of values) { if ((value = valueof(value, ++index, values)) != null && (value = +value) >= value) { ++count; } } } return count; } function length$3(array) { return array.length | 0; } function empty$2(length) { return !(length > 0); } function arrayify(values) { return typeof values !== "object" || "length" in values ? values : Array.from(values); } function reducer(reduce) { return values => reduce(...values); } function cross$2(...values) { const reduce = typeof values[values.length - 1] === "function" && reducer(values.pop()); values = values.map(arrayify); const lengths = values.map(length$3); const j = values.length - 1; const index = new Array(j + 1).fill(0); const product = []; if (j < 0 || lengths.some(empty$2)) return product; while (true) { product.push(index.map((j, i) => values[i][j])); let i = j; while (++index[i] === lengths[i]) { if (i === 0) return reduce ? product.map(reduce) : product; index[i--] = 0; } } } function cumsum(values, valueof) { var sum = 0, index = 0; return Float64Array.from(values, valueof === undefined ? v => (sum += +v || 0) : v => (sum += +valueof(v, index++, values) || 0)); } function variance(values, valueof) { let count = 0; let delta; let mean = 0; let sum = 0; if (valueof === undefined) { for (let value of values) { if (value != null && (value = +value) >= value) { delta = value - mean; mean += delta / ++count; sum += delta * (value - mean); } } } else { let index = -1; for (let value of values) { if ((value = valueof(value, ++index, values)) != null && (value = +value) >= value) { delta = value - mean; mean += delta / ++count; sum += delta * (value - mean); } } } if (count > 1) return sum / (count - 1); } function deviation(values, valueof) { const v = variance(values, valueof); return v ? Math.sqrt(v) : v; } function extent$1(values, valueof) { let min; let max; if (valueof === undefined) { for (const value of values) { if (value != null) { if (min === undefined) { if (value >= value) min = max = value; } else { if (min > value) min = value; if (max < value) max = value; } } } } else { let index = -1; for (let value of values) { if ((value = valueof(value, ++index, values)) != null) { if (min === undefined) { if (value >= value) min = max = value; } else { if (min > value) min = value; if (max < value) max = value; } } } } return [min, max]; } // https://github.com/python/cpython/blob/a74eea238f5baba15797e2e8b570d153bc8690a7/Modules/mathmodule.c#L1423 class Adder { constructor() { this._partials = new Float64Array(32); this._n = 0; } add(x) { const p = this._partials; let i = 0; for (let j = 0; j < this._n && j < 32; j++) { const y = p[j], hi = x + y, lo = Math.abs(x) < Math.abs(y) ? x - (hi - y) : y - (hi - x); if (lo) p[i++] = lo; x = hi; } p[i] = x; this._n = i + 1; return this; } valueOf() { const p = this._partials; let n = this._n, x, y, lo, hi = 0; if (n > 0) { hi = p[--n]; while (n > 0) { x = hi; y = p[--n]; hi = x + y; lo = y - (hi - x); if (lo) break; } if (n > 0 && ((lo < 0 && p[n - 1] < 0) || (lo > 0 && p[n - 1] > 0))) { y = lo * 2; x = hi + y; if (y == x - hi) hi = x; } } return hi; } } function fsum(values, valueof) { const adder = new Adder(); if (valueof === undefined) { for (let value of values) { if (value = +value) { adder.add(value); } } } else { let index = -1; for (let value of values) { if (value = +valueof(value, ++index, values)) { adder.add(value); } } } return +adder; } function fcumsum(values, valueof) { const adder = new Adder(); let index = -1; return Float64Array.from(values, valueof === undefined ? v => adder.add(+v || 0) : v => adder.add(+valueof(v, ++index, values) || 0) ); } class InternMap extends Map { constructor(entries, key = keyof) { super(); Object.defineProperties(this, {_intern: {value: new Map()}, _key: {value: key}}); if (entries != null) for (const [key, value] of entries) this.set(key, value); } get(key) { return super.get(intern_get(this, key)); } has(key) { return super.has(intern_get(this, key)); } set(key, value) { return super.set(intern_set(this, key), value); } delete(key) { return super.delete(intern_delete(this, key)); } } class InternSet extends Set { constructor(values, key = keyof) { super(); Object.defineProperties(this, {_intern: {value: new Map()}, _key: {value: key}}); if (values != null) for (const value of values) this.add(value); } has(value) { return super.has(intern_get(this, value)); } add(value) { return super.add(intern_set(this, value)); } delete(value) { return super.delete(intern_delete(this, value)); } } function intern_get({_intern, _key}, value) { const key = _key(value); return _intern.has(key) ? _intern.get(key) : value; } function intern_set({_intern, _key}, value) { const key = _key(value); if (_intern.has(key)) return _intern.get(key); _intern.set(key, value); return value; } function intern_delete({_intern, _key}, value) { const key = _key(value); if (_intern.has(key)) { value = _intern.get(key); _intern.delete(key); } return value; } function keyof(value) { return value !== null && typeof value === "object" ? value.valueOf() : value; } function identity$9(x) { return x; } function group(values, ...keys) { return nest(values, identity$9, identity$9, keys); } function groups(values, ...keys) { return nest(values, Array.from, identity$9, keys); } function flatten$1(groups, keys) { for (let i = 1, n = keys.length; i < n; ++i) { groups = groups.flatMap(g => g.pop().map(([key, value]) => [...g, key, value])); } return groups; } function flatGroup(values, ...keys) { return flatten$1(groups(values, ...keys), keys); } function flatRollup(values, reduce, ...keys) { return flatten$1(rollups(values, reduce, ...keys), keys); } function rollup(values, reduce, ...keys) { return nest(values, identity$9, reduce, keys); } function rollups(values, reduce, ...keys) { return nest(values, Array.from, reduce, keys); } function index$4(values, ...keys) { return nest(values, identity$9, unique, keys); } function indexes(values, ...keys) { return nest(values, Array.from, unique, keys); } function unique(values) { if (values.length !== 1) throw new Error("duplicate key"); return values[0]; } function nest(values, map, reduce, keys) { return (function regroup(values, i) { if (i >= keys.length) return reduce(values); const groups = new InternMap(); const keyof = keys[i++]; let index = -1; for (const value of values) { const key = keyof(value, ++index, values); const group = groups.get(key); if (group) group.push(value); else groups.set(key, [value]); } for (const [key, values] of groups) { groups.set(key, regroup(values, i)); } return map(groups); })(values, 0); } function permute(source, keys) { return Array.from(keys, key => source[key]); } function sort(values, ...F) { if (typeof values[Symbol.iterator] !== "function") throw new TypeError("values is not iterable"); values = Array.from(values); let [f] = F; if ((f && f.length !== 2) || F.length > 1) { const index = Uint32Array.from(values, (d, i) => i); if (F.length > 1) { F = F.map(f => values.map(f)); index.sort((i, j) => { for (const f of F) { const c = ascendingDefined(f[i], f[j]); if (c) return c; } }); } else { f = values.map(f); index.sort((i, j) => ascendingDefined(f[i], f[j])); } return permute(values, index); } return values.sort(compareDefined(f)); } function compareDefined(compare = ascending$3) { if (compare === ascending$3) return ascendingDefined; if (typeof compare !== "function") throw new TypeError("compare is not a function"); return (a, b) => { const x = compare(a, b); if (x || x === 0) return x; return (compare(b, b) === 0) - (compare(a, a) === 0); }; } function ascendingDefined(a, b) { return (a == null || !(a >= a)) - (b == null || !(b >= b)) || (a < b ? -1 : a > b ? 1 : 0); } function groupSort(values, reduce, key) { return (reduce.length !== 2 ? sort(rollup(values, reduce, key), (([ak, av], [bk, bv]) => ascending$3(av, bv) || ascending$3(ak, bk))) : sort(group(values, key), (([ak, av], [bk, bv]) => reduce(av, bv) || ascending$3(ak, bk)))) .map(([key]) => key); } var array$5 = Array.prototype; var slice$3 = array$5.slice; function constant$b(x) { return () => x; } const e10 = Math.sqrt(50), e5 = Math.sqrt(10), e2 = Math.sqrt(2); function tickSpec(start, stop, count) { const step = (stop - start) / Math.max(0, count), power = Math.floor(Math.log10(step)), error = step / Math.pow(10, power), factor = error >= e10 ? 10 : error >= e5 ? 5 : error >= e2 ? 2 : 1; let i1, i2, inc; if (power < 0) { inc = Math.pow(10, -power) / factor; i1 = Math.round(start * inc); i2 = Math.round(stop * inc); if (i1 / inc < start) ++i1; if (i2 / inc > stop) --i2; inc = -inc; } else { inc = Math.pow(10, power) * factor; i1 = Math.round(start / inc); i2 = Math.round(stop / inc); if (i1 * inc < start) ++i1; if (i2 * inc > stop) --i2; } if (i2 < i1 && 0.5 <= count && count < 2) return tickSpec(start, stop, count * 2); return [i1, i2, inc]; } function ticks(start, stop, count) { stop = +stop, start = +start, count = +count; if (!(count > 0)) return []; if (start === stop) return [start]; const reverse = stop < start, [i1, i2, inc] = reverse ? tickSpec(stop, start, count) : tickSpec(start, stop, count); if (!(i2 >= i1)) return []; const n = i2 - i1 + 1, ticks = new Array(n); if (reverse) { if (inc < 0) for (let i = 0; i < n; ++i) ticks[i] = (i2 - i) / -inc; else for (let i = 0; i < n; ++i) ticks[i] = (i2 - i) * inc; } else { if (inc < 0) for (let i = 0; i < n; ++i) ticks[i] = (i1 + i) / -inc; else for (let i = 0; i < n; ++i) ticks[i] = (i1 + i) * inc; } return ticks; } function tickIncrement(start, stop, count) { stop = +stop, start = +start, count = +count; return tickSpec(start, stop, count)[2]; } function tickStep(start, stop, count) { stop = +stop, start = +start, count = +count; const reverse = stop < start, inc = reverse ? tickIncrement(stop, start, count) : tickIncrement(start, stop, count); return (reverse ? -1 : 1) * (inc < 0 ? 1 / -inc : inc); } function nice$1(start, stop, count) { let prestep; while (true) { const step = tickIncrement(start, stop, count); if (step === prestep || step === 0 || !isFinite(step)) { return [start, stop]; } else if (step > 0) { start = Math.floor(start / step) * step; stop = Math.ceil(stop / step) * step; } else if (step < 0) { start = Math.ceil(start * step) / step; stop = Math.floor(stop * step) / step; } prestep = step; } } function thresholdSturges(values) { return Math.max(1, Math.ceil(Math.log(count$1(values)) / Math.LN2) + 1); } function bin() { var value = identity$9, domain = extent$1, threshold = thresholdSturges; function histogram(data) { if (!Array.isArray(data)) data = Array.from(data); var i, n = data.length, x, step, values = new Array(n); for (i = 0; i < n; ++i) { values[i] = value(data[i], i, data); } var xz = domain(values), x0 = xz[0], x1 = xz[1], tz = threshold(values, x0, x1); // Convert number of thresholds into uniform thresholds, and nice the // default domain accordingly. if (!Array.isArray(tz)) { const max = x1, tn = +tz; if (domain === extent$1) [x0, x1] = nice$1(x0, x1, tn); tz = ticks(x0, x1, tn); // If the domain is aligned with the first tick (which it will by // default), then we can use quantization rather than bisection to bin // values, which is substantially faster. if (tz[0] <= x0) step = tickIncrement(x0, x1, tn); // If the last threshold is coincident with the domain’s upper bound, the // last bin will be zero-width. If the default domain is used, and this // last threshold is coincident with the maximum input value, we can // extend the niced upper bound by one tick to ensure uniform bin widths; // otherwise, we simply remove the last threshold. Note that we don’t // coerce values or the domain to numbers, and thus must be careful to // compare order (>=) rather than strict equality (===)! if (tz[tz.length - 1] >= x1) { if (max >= x1 && domain === extent$1) { const step = tickIncrement(x0, x1, tn); if (isFinite(step)) { if (step > 0) { x1 = (Math.floor(x1 / step) + 1) * step; } else if (step < 0) { x1 = (Math.ceil(x1 * -step) + 1) / -step; } } } else { tz.pop(); } } } // Remove any thresholds outside the domain. // Be careful not to mutate an array owned by the user! var m = tz.length, a = 0, b = m; while (tz[a] <= x0) ++a; while (tz[b - 1] > x1) --b; if (a || b < m) tz = tz.slice(a, b), m = b - a; var bins = new Array(m + 1), bin; // Initialize bins. for (i = 0; i <= m; ++i) { bin = bins[i] = []; bin.x0 = i > 0 ? tz[i - 1] : x0; bin.x1 = i < m ? tz[i] : x1; } // Assign data to bins by value, ignoring any outside the domain. if (isFinite(step)) { if (step > 0) { for (i = 0; i < n; ++i) { if ((x = values[i]) != null && x0 <= x && x <= x1) { bins[Math.min(m, Math.floor((x - x0) / step))].push(data[i]); } } } else if (step < 0) { for (i = 0; i < n; ++i) { if ((x = values[i]) != null && x0 <= x && x <= x1) { const j = Math.floor((x0 - x) * step); bins[Math.min(m, j + (tz[j] <= x))].push(data[i]); // handle off-by-one due to rounding } } } } else { for (i = 0; i < n; ++i) { if ((x = values[i]) != null && x0 <= x && x <= x1) { bins[bisect(tz, x, 0, m)].push(data[i]); } } } return bins; } histogram.value = function(_) { return arguments.length ? (value = typeof _ === "function" ? _ : constant$b(_), histogram) : value; }; histogram.domain = function(_) { return arguments.length ? (domain = typeof _ === "function" ? _ : constant$b([_[0], _[1]]), histogram) : domain; }; histogram.thresholds = function(_) { return arguments.length ? (threshold = typeof _ === "function" ? _ : constant$b(Array.isArray(_) ? slice$3.call(_) : _), histogram) : threshold; }; return histogram; } function max$3(values, valueof) { let max; if (valueof === undefined) { for (const value of values) { if (value != null && (max < value || (max === undefined && value >= value))) { max = value; } } } else { let index = -1; for (let value of values) { if ((value = valueof(value, ++index, values)) != null && (max < value || (max === undefined && value >= value))) { max = value; } } } return max; } function maxIndex(values, valueof) { let max; let maxIndex = -1; let index = -1; if (valueof === undefined) { for (const value of values) { ++index; if (value != null && (max < value || (max === undefined && value >= value))) { max = value, maxIndex = index; } } } else { for (let value of values) { if ((value = valueof(value, ++index, values)) != null && (max < value || (max === undefined && value >= value))) { max = value, maxIndex = index; } } } return maxIndex; } function min$2(values, valueof) { let min; if (valueof === undefined) { for (const value of values) { if (value != null && (min > value || (min === undefined && value >= value))) { min = value; } } } else { let index = -1; for (let value of values) { if ((value = valueof(value, ++index, values)) != null && (min > value || (min === undefined && value >= value))) { min = value; } } } return min; } function minIndex(values, valueof) { let min; let minIndex = -1; let index = -1; if (valueof === undefined) { for (const value of values) { ++index; if (value != null && (min > value || (min === undefined && value >= value))) { min = value, minIndex = index; } } } else { for (let value of values) { if ((value = valueof(value, ++index, values)) != null && (min > value || (min === undefined && value >= value))) { min = value, minIndex = index; } } } return minIndex; } // Based on https://github.com/mourner/quickselect // ISC license, Copyright 2018 Vladimir Agafonkin. function quickselect(array, k, left = 0, right = Infinity, compare) { k = Math.floor(k); left = Math.floor(Math.max(0, left)); right = Math.floor(Math.min(array.length - 1, right)); if (!(left <= k && k <= right)) return array; compare = compare === undefined ? ascendingDefined : compareDefined(compare); while (right > left) { if (right - left > 600) { const n = right - left + 1; const m = k - left + 1; const z = Math.log(n); const s = 0.5 * Math.exp(2 * z / 3); const sd = 0.5 * Math.sqrt(z * s * (n - s) / n) * (m - n / 2 < 0 ? -1 : 1); const newLeft = Math.max(left, Math.floor(k - m * s / n + sd)); const newRight = Math.min(right, Math.floor(k + (n - m) * s / n + sd)); quickselect(array, k, newLeft, newRight, compare); } const t = array[k]; let i = left; let j = right; swap$1(array, left, k); if (compare(array[right], t) > 0) swap$1(array, left, right); while (i < j) { swap$1(array, i, j), ++i, --j; while (compare(array[i], t) < 0) ++i; while (compare(array[j], t) > 0) --j; } if (compare(array[left], t) === 0) swap$1(array, left, j); else ++j, swap$1(array, j, right); if (j <= k) left = j + 1; if (k <= j) right = j - 1; } return array; } function swap$1(array, i, j) { const t = array[i]; array[i] = array[j]; array[j] = t; } function greatest(values, compare = ascending$3) { let max; let defined = false; if (compare.length === 1) { let maxValue; for (const element of values) { const value = compare(element); if (defined ? ascending$3(value, maxValue) > 0 : ascending$3(value, value) === 0) { max = element; maxValue = value; defined = true; } } } else { for (const value of values) { if (defined ? compare(value, max) > 0 : compare(value, value) === 0) { max = value; defined = true; } } } return max; } function quantile$1(values, p, valueof) { values = Float64Array.from(numbers(values, valueof)); if (!(n = values.length) || isNaN(p = +p)) return; if (p <= 0 || n < 2) return min$2(values); if (p >= 1) return max$3(values); var n, i = (n - 1) * p, i0 = Math.floor(i), value0 = max$3(quickselect(values, i0).subarray(0, i0 + 1)), value1 = min$2(values.subarray(i0 + 1)); return value0 + (value1 - value0) * (i - i0); } function quantileSorted(values, p, valueof = number$3) { if (!(n = values.length) || isNaN(p = +p)) return; if (p <= 0 || n < 2) return +valueof(values[0], 0, values); if (p >= 1) return +valueof(values[n - 1], n - 1, values); var n, i = (n - 1) * p, i0 = Math.floor(i), value0 = +valueof(values[i0], i0, values), value1 = +valueof(values[i0 + 1], i0 + 1, values); return value0 + (value1 - value0) * (i - i0); } function quantileIndex(values, p, valueof) { values = Float64Array.from(numbers(values, valueof)); if (!(n = values.length) || isNaN(p = +p)) return; if (p <= 0 || n < 2) return minIndex(values); if (p >= 1) return maxIndex(values); var n, i = Math.floor((n - 1) * p), order = (i, j) => ascendingDefined(values[i], values[j]), index = quickselect(Uint32Array.from(values, (_, i) => i), i, 0, n - 1, order); return greatest(index.subarray(0, i + 1), i => values[i]); } function thresholdFreedmanDiaconis(values, min, max) { const c = count$1(values), d = quantile$1(values, 0.75) - quantile$1(values, 0.25); return c && d ? Math.ceil((max - min) / (2 * d * Math.pow(c, -1 / 3))) : 1; } function thresholdScott(values, min, max) { const c = count$1(values), d = deviation(values); return c && d ? Math.ceil((max - min) * Math.cbrt(c) / (3.49 * d)) : 1; } function mean(values, valueof) { let count = 0; let sum = 0; if (valueof === undefined) { for (let value of values) { if (value != null && (value = +value) >= value) { ++count, sum += value; } } } else { let index = -1; for (let value of values) { if ((value = valueof(value, ++index, values)) != null && (value = +value) >= value) { ++count, sum += value; } } } if (count) return sum / count; } function median(values, valueof) { return quantile$1(values, 0.5, valueof); } function medianIndex(values, valueof) { return quantileIndex(values, 0.5, valueof); } function* flatten(arrays) { for (const array of arrays) { yield* array; } } function merge(arrays) { return Array.from(flatten(arrays)); } function mode(values, valueof) { const counts = new InternMap(); if (valueof === undefined) { for (let value of values) { if (value != null && value >= value) { counts.set(value, (counts.get(value) || 0) + 1); } } } else { let index = -1; for (let value of values) { if ((value = valueof(value, ++index, values)) != null && value >= value) { counts.set(value, (counts.get(value) || 0) + 1); } } } let modeValue; let modeCount = 0; for (const [value, count] of counts) { if (count > modeCount) { modeCount = count; modeValue = value; } } return modeValue; } function pairs(values, pairof = pair) { const pairs = []; let previous; let first = false; for (const value of values) { if (first) pairs.push(pairof(previous, value)); previous = value; first = true; } return pairs; } function pair(a, b) { return [a, b]; } function range$2(start, stop, step) { start = +start, stop = +stop, step = (n = arguments.length) < 2 ? (stop = start, start = 0, 1) : n < 3 ? 1 : +step; var i = -1, n = Math.max(0, Math.ceil((stop - start) / step)) | 0, range = new Array(n); while (++i < n) { range[i] = start + i * step; } return range; } function rank(values, valueof = ascending$3) { if (typeof values[Symbol.iterator] !== "function") throw new TypeError("values is not iterable"); let V = Array.from(values); const R = new Float64Array(V.length); if (valueof.length !== 2) V = V.map(valueof), valueof = ascending$3; const compareIndex = (i, j) => valueof(V[i], V[j]); let k, r; values = Uint32Array.from(V, (_, i) => i); // Risky chaining due to Safari 14 https://github.com/d3/d3-array/issues/123 values.sort(valueof === ascending$3 ? (i, j) => ascendingDefined(V[i], V[j]) : compareDefined(compareIndex)); values.forEach((j, i) => { const c = compareIndex(j, k === undefined ? j : k); if (c >= 0) { if (k === undefined || c > 0) k = j, r = i; R[j] = r; } else { R[j] = NaN; } }); return R; } function least(values, compare = ascending$3) { let min; let defined = false; if (compare.length === 1) { let minValue; for (const element of values) { const value = compare(element); if (defined ? ascending$3(value, minValue) < 0 : ascending$3(value, value) === 0) { min = element; minValue = value; defined = true; } } } else { for (const value of values) { if (defined ? compare(value, min) < 0 : compare(value, value) === 0) { min = value; defined = true; } } } return min; } function leastIndex(values, compare = ascending$3) { if (compare.length === 1) return minIndex(values, compare); let minValue; let min = -1; let index = -1; for (const value of values) { ++index; if (min < 0 ? compare(value, value) === 0 : compare(value, minValue) < 0) { minValue = value; min = index; } } return min; } function greatestIndex(values, compare = ascending$3) { if (compare.length === 1) return maxIndex(values, compare); let maxValue; let max = -1; let index = -1; for (const value of values) { ++index; if (max < 0 ? compare(value, value) === 0 : compare(value, maxValue) > 0) { maxValue = value; max = index; } } return max; } function scan(values, compare) { const index = leastIndex(values, compare); return index < 0 ? undefined : index; } var shuffle$1 = shuffler(Math.random); function shuffler(random) { return function shuffle(array, i0 = 0, i1 = array.length) { let m = i1 - (i0 = +i0); while (m) { const i = random() * m-- | 0, t = array[m + i0]; array[m + i0] = array[i + i0]; array[i + i0] = t; } return array; }; } function sum$2(values, valueof) { let sum = 0; if (valueof === undefined) { for (let value of values) { if (value = +value) { sum += value; } } } else { let index = -1; for (let value of values) { if (value = +valueof(value, ++index, values)) { sum += value; } } } return sum; } function transpose(matrix) { if (!(n = matrix.length)) return []; for (var i = -1, m = min$2(matrix, length$2), transpose = new Array(m); ++i < m;) { for (var j = -1, n, row = transpose[i] = new Array(n); ++j < n;) { row[j] = matrix[j][i]; } } return transpose; } function length$2(d) { return d.length; } function zip() { return transpose(arguments); } function every(values, test) { if (typeof test !== "function") throw new TypeError("test is not a function"); let index = -1; for (const value of values) { if (!test(value, ++index, values)) { return false; } } return true; } function some(values, test) { if (typeof test !== "function") throw new TypeError("test is not a function"); let index = -1; for (const value of values) { if (test(value, ++index, values)) { return true; } } return false; } function filter$1(values, test) { if (typeof test !== "function") throw new TypeError("test is not a function"); const array = []; let index = -1; for (const value of values) { if (test(value, ++index, values)) { array.push(value); } } return array; } function map$1(values, mapper) { if (typeof values[Symbol.iterator] !== "function") throw new TypeError("values is not iterable"); if (typeof mapper !== "function") throw new TypeError("mapper is not a function"); return Array.from(values, (value, index) => mapper(value, index, values)); } function reduce(values, reducer, value) { if (typeof reducer !== "function") throw new TypeError("reducer is not a function"); const iterator = values[Symbol.iterator](); let done, next, index = -1; if (arguments.length < 3) { ({done, value} = iterator.next()); if (done) return; ++index; } while (({done, value: next} = iterator.next()), !done) { value = reducer(value, next, ++index, values); } return value; } function reverse$1(values) { if (typeof values[Symbol.iterator] !== "function") throw new TypeError("values is not iterable"); return Array.from(values).reverse(); } function difference(values, ...others) { values = new InternSet(values); for (const other of others) { for (const value of other) { values.delete(value); } } return values; } function disjoint(values, other) { const iterator = other[Symbol.iterator](), set = new InternSet(); for (const v of values) { if (set.has(v)) return false; let value, done; while (({value, done} = iterator.next())) { if (done) break; if (Object.is(v, value)) return false; set.add(value); } } return true; } function intersection(values, ...others) { values = new InternSet(values); others = others.map(set$2); out: for (const value of values) { for (const other of others) { if (!other.has(value)) { values.delete(value); continue out; } } } return values; } function set$2(values) { return values instanceof InternSet ? values : new InternSet(values); } function superset(values, other) { const iterator = values[Symbol.iterator](), set = new Set(); for (const o of other) { const io = intern(o); if (set.has(io)) continue; let value, done; while (({value, done} = iterator.next())) { if (done) return false; const ivalue = intern(value); set.add(ivalue); if (Object.is(io, ivalue)) break; } } return true; } function intern(value) { return value !== null && typeof value === "object" ? value.valueOf() : value; } function subset(values, other) { return superset(other, values); } function union(...others) { const set = new InternSet(); for (const other of others) { for (const o of other) { set.add(o); } } return set; } function identity$8(x) { return x; } var top = 1, right = 2, bottom = 3, left = 4, epsilon$6 = 1e-6; function translateX(x) { return "translate(" + x + ",0)"; } function translateY(y) { return "translate(0," + y + ")"; } function number$2(scale) { return d => +scale(d); } function center$1(scale, offset) { offset = Math.max(0, scale.bandwidth() - offset * 2) / 2; if (scale.round()) offset = Math.round(offset); return d => +scale(d) + offset; } function entering() { return !this.__axis; } function axis(orient, scale) { var tickArguments = [], tickValues = null, tickFormat = null, tickSizeInner = 6, tickSizeOuter = 6, tickPadding = 3, offset = typeof window !== "undefined" && window.devicePixelRatio > 1 ? 0 : 0.5, k = orient === top || orient === left ? -1 : 1, x = orient === left || orient === right ? "x" : "y", transform = orient === top || orient === bottom ? translateX : translateY; function axis(context) { var values = tickValues == null ? (scale.ticks ? scale.ticks.apply(scale, tickArguments) : scale.domain()) : tickValues, format = tickFormat == null ? (scale.tickFormat ? scale.tickFormat.apply(scale, tickArguments) : identity$8) : tickFormat, spacing = Math.max(tickSizeInner, 0) + tickPadding, range = scale.range(), range0 = +range[0] + offset, range1 = +range[range.length - 1] + offset, position = (scale.bandwidth ? center$1 : number$2)(scale.copy(), offset), selection = context.selection ? context.selection() : context, path = selection.selectAll(".domain").data([null]), tick = selection.selectAll(".tick").data(values, scale).order(), tickExit = tick.exit(), tickEnter = tick.enter().append("g").attr("class", "tick"), line = tick.select("line"), text = tick.select("text"); path = path.merge(path.enter().insert("path", ".tick") .attr("class", "domain") .attr("stroke", "currentColor")); tick = tick.merge(tickEnter); line = line.merge(tickEnter.append("line") .attr("stroke", "currentColor") .attr(x + "2", k * tickSizeInner)); text = text.merge(tickEnter.append("text") .attr("fill", "currentColor") .attr(x, k * spacing) .attr("dy", orient === top ? "0em" : orient === bottom ? "0.71em" : "0.32em")); if (context !== selection) { path = path.transition(context); tick = tick.transition(context); line = line.transition(context); text = text.transition(context); tickExit = tickExit.transition(context) .attr("opacity", epsilon$6) .attr("transform", function(d) { return isFinite(d = position(d)) ? transform(d + offset) : this.getAttribute("transform"); }); tickEnter .attr("opacity", epsilon$6) .attr("transform", function(d) { var p = this.parentNode.__axis; return transform((p && isFinite(p = p(d)) ? p : position(d)) + offset); }); } tickExit.remove(); path .attr("d", orient === left || orient === right ? (tickSizeOuter ? "M" + k * tickSizeOuter + "," + range0 + "H" + offset + "V" + range1 + "H" + k * tickSizeOuter : "M" + offset + "," + range0 + "V" + range1) : (tickSizeOuter ? "M" + range0 + "," + k * tickSizeOuter + "V" + offset + "H" + range1 + "V" + k * tickSizeOuter : "M" + range0 + "," + offset + "H" + range1)); tick .attr("opacity", 1) .attr("transform", function(d) { return transform(position(d) + offset); }); line .attr(x + "2", k * tickSizeInner); text .attr(x, k * spacing) .text(format); selection.filter(entering) .attr("fill", "none") .attr("font-size", 10) .attr("font-family", "sans-serif") .attr("text-anchor", orient === right ? "start" : orient === left ? "end" : "middle"); selection .each(function() { this.__axis = position; }); } axis.scale = function(_) { return arguments.length ? (scale = _, axis) : scale; }; axis.ticks = function() { return tickArguments = Array.from(arguments), axis; }; axis.tickArguments = function(_) { return arguments.length ? (tickArguments = _ == null ? [] : Array.from(_), axis) : tickArguments.slice(); }; axis.tickValues = function(_) { return arguments.length ? (tickValues = _ == null ? null : Array.from(_), axis) : tickValues && tickValues.slice(); }; axis.tickFormat = function(_) { return arguments.length ? (tickFormat = _, axis) : tickFormat; }; axis.tickSize = function(_) { return arguments.length ? (tickSizeInner = tickSizeOuter = +_, axis) : tickSizeInner; }; axis.tickSizeInner = function(_) { return arguments.length ? (tickSizeInner = +_, axis) : tickSizeInner; }; axis.tickSizeOuter = function(_) { return arguments.length ? (tickSizeOuter = +_, axis) : tickSizeOuter; }; axis.tickPadding = function(_) { return arguments.length ? (tickPadding = +_, axis) : tickPadding; }; axis.offset = function(_) { return arguments.length ? (offset = +_, axis) : offset; }; return axis; } function axisTop(scale) { return axis(top, scale); } function axisRight(scale) { return axis(right, scale); } function axisBottom(scale) { return axis(bottom, scale); } function axisLeft(scale) { return axis(left, scale); } var noop$3 = {value: () => {}}; function dispatch() { for (var i = 0, n = arguments.length, _ = {}, t; i < n; ++i) { if (!(t = arguments[i] + "") || (t in _) || /[\s.]/.test(t)) throw new Error("illegal type: " + t); _[t] = []; } return new Dispatch(_); } function Dispatch(_) { this._ = _; } function parseTypenames$1(typenames, types) { return typenames.trim().split(/^|\s+/).map(function(t) { var name = "", i = t.indexOf("."); if (i >= 0) name = t.slice(i + 1), t = t.slice(0, i); if (t && !types.hasOwnProperty(t)) throw new Error("unknown type: " + t); return {type: t, name: name}; }); } Dispatch.prototype = dispatch.prototype = { constructor: Dispatch, on: function(typename, callback) { var _ = this._, T = parseTypenames$1(typename + "", _), t, i = -1, n = T.length; // If no callback was specified, return the callback of the given type and name. if (arguments.length < 2) { while (++i < n) if ((t = (typename = T[i]).type) && (t = get$1(_[t], typename.name))) return t; return; } // If a type was specified, set the callback for the given type and name. // Otherwise, if a null callback was specified, remove callbacks of the given name. if (callback != null && typeof callback !== "function") throw new Error("invalid callback: " + callback); while (++i < n) { if (t = (typename = T[i]).type) _[t] = set$1(_[t], typename.name, callback); else if (callback == null) for (t in _) _[t] = set$1(_[t], typename.name, null); } return this; }, copy: function() { var copy = {}, _ = this._; for (var t in _) copy[t] = _[t].slice(); return new Dispatch(copy); }, call: function(type, that) { if ((n = arguments.length - 2) > 0) for (var args = new Array(n), i = 0, n, t; i < n; ++i) args[i] = arguments[i + 2]; if (!this._.hasOwnProperty(type)) throw new Error("unknown type: " + type); for (t = this._[type], i = 0, n = t.length; i < n; ++i) t[i].value.apply(that, args); }, apply: function(type, that, args) { if (!this._.hasOwnProperty(type)) throw new Error("unknown type: " + type); for (var t = this._[type], i = 0, n = t.length; i < n; ++i) t[i].value.apply(that, args); } }; function get$1(type, name) { for (var i = 0, n = type.length, c; i < n; ++i) { if ((c = type[i]).name === name) { return c.value; } } } function set$1(type, name, callback) { for (var i = 0, n = type.length; i < n; ++i) { if (type[i].name === name) { type[i] = noop$3, type = type.slice(0, i).concat(type.slice(i + 1)); break; } } if (callback != null) type.push({name: name, value: callback}); return type; } var xhtml = "http://www.w3.org/1999/xhtml"; var namespaces = { svg: "http://www.w3.org/2000/svg", xhtml: xhtml, xlink: "http://www.w3.org/1999/xlink", xml: "http://www.w3.org/XML/1998/namespace", xmlns: "http://www.w3.org/2000/xmlns/" }; function namespace(name) { var prefix = name += "", i = prefix.indexOf(":"); if (i >= 0 && (prefix = name.slice(0, i)) !== "xmlns") name = name.slice(i + 1); return namespaces.hasOwnProperty(prefix) ? {space: namespaces[prefix], local: name} : name; // eslint-disable-line no-prototype-builtins } function creatorInherit(name) { return function() { var document = this.ownerDocument, uri = this.namespaceURI; return uri === xhtml && document.documentElement.namespaceURI === xhtml ? document.createElement(name) : document.createElementNS(uri, name); }; } function creatorFixed(fullname) { return function() { return this.ownerDocument.createElementNS(fullname.space, fullname.local); }; } function creator(name) { var fullname = namespace(name); return (fullname.local ? creatorFixed : creatorInherit)(fullname); } function none$2() {} function selector(selector) { return selector == null ? none$2 : function() { return this.querySelector(selector); }; } function selection_select(select) { if (typeof select !== "function") select = selector(select); for (var groups = this._groups, m = groups.length, subgroups = new Array(m), j = 0; j < m; ++j) { for (var group = groups[j], n = group.length, subgroup = subgroups[j] = new Array(n), node, subnode, i = 0; i < n; ++i) { if ((node = group[i]) && (subnode = select.call(node, node.__data__, i, group))) { if ("__data__" in node) subnode.__data__ = node.__data__; subgroup[i] = subnode; } } } return new Selection$1(subgroups, this._parents); } // Given something array like (or null), returns something that is strictly an // array. This is used to ensure that array-like objects passed to d3.selectAll // or selection.selectAll are converted into proper arrays when creating a // selection; we don’t ever want to create a selection backed by a live // HTMLCollection or NodeList. However, note that selection.selectAll will use a // static NodeList as a group, since it safely derived from querySelectorAll. function array$4(x) { return x == null ? [] : Array.isArray(x) ? x : Array.from(x); } function empty$1() { return []; } function selectorAll(selector) { return selector == null ? empty$1 : function() { return this.querySelectorAll(selector); }; } function arrayAll(select) { return function() { return array$4(select.apply(this, arguments)); }; } function selection_selectAll(select) { if (typeof select === "function") select = arrayAll(select); else select = selectorAll(select); for (var groups = this._groups, m = groups.length, subgroups = [], parents = [], j = 0; j < m; ++j) { for (var group = groups[j], n = group.length, node, i = 0; i < n; ++i) { if (node = group[i]) { subgroups.push(select.call(node, node.__data__, i, group)); parents.push(node); } } } return new Selection$1(subgroups, parents); } function matcher(selector) { return function() { return this.matches(selector); }; } function childMatcher(selector) { return function(node) { return node.matches(selector); }; } var find$1 = Array.prototype.find; function childFind(match) { return function() { return find$1.call(this.children, match); }; } function childFirst() { return this.firstElementChild; } function selection_selectChild(match) { return this.select(match == null ? childFirst : childFind(typeof match === "function" ? match : childMatcher(match))); } var filter = Array.prototype.filter; function children() { return Array.from(this.children); } function childrenFilter(match) { return function() { return filter.call(this.children, match); }; } function selection_selectChildren(match) { return this.selectAll(match == null ? children : childrenFilter(typeof match === "function" ? match : childMatcher(match))); } function selection_filter(match) { if (typeof match !== "function") match = matcher(match); for (var groups = this._groups, m = groups.length, subgroups = new Array(m), j = 0; j < m; ++j) { for (va