d2-ui
Version:
80 lines (66 loc) • 2.35 kB
JavaScript
import "../math/trigonometry";
import "compose";
import "equirectangular";
import "geo";
d3.geo.rotation = function(rotate) {
rotate = d3_geo_rotation(rotate[0] % 360 * d3_radians, rotate[1] * d3_radians, rotate.length > 2 ? rotate[2] * d3_radians : 0);
function forward(coordinates) {
coordinates = rotate(coordinates[0] * d3_radians, coordinates[1] * d3_radians);
return coordinates[0] *= d3_degrees, coordinates[1] *= d3_degrees, coordinates;
}
forward.invert = function(coordinates) {
coordinates = rotate.invert(coordinates[0] * d3_radians, coordinates[1] * d3_radians);
return coordinates[0] *= d3_degrees, coordinates[1] *= d3_degrees, coordinates;
};
return forward;
};
function d3_geo_identityRotation(λ, φ) {
return [λ > π ? λ - τ : λ < -π ? λ + τ : λ, φ];
}
d3_geo_identityRotation.invert = d3_geo_equirectangular;
// Note: |δλ| must be < 2π
function d3_geo_rotation(δλ, δφ, δγ) {
return δλ ? (δφ || δγ ? d3_geo_compose(d3_geo_rotationλ(δλ), d3_geo_rotationφγ(δφ, δγ))
: d3_geo_rotationλ(δλ))
: (δφ || δγ ? d3_geo_rotationφγ(δφ, δγ)
: d3_geo_identityRotation);
}
function d3_geo_forwardRotationλ(δλ) {
return function(λ, φ) {
return λ += δλ, [λ > π ? λ - τ : λ < -π ? λ + τ : λ, φ];
};
}
function d3_geo_rotationλ(δλ) {
var rotation = d3_geo_forwardRotationλ(δλ);
rotation.invert = d3_geo_forwardRotationλ(-δλ);
return rotation;
}
function d3_geo_rotationφγ(δφ, δγ) {
var cosδφ = Math.cos(δφ),
sinδφ = Math.sin(δφ),
cosδγ = Math.cos(δγ),
sinδγ = Math.sin(δγ);
function rotation(λ, φ) {
var cosφ = Math.cos(φ),
x = Math.cos(λ) * cosφ,
y = Math.sin(λ) * cosφ,
z = Math.sin(φ),
k = z * cosδφ + x * sinδφ;
return [
Math.atan2(y * cosδγ - k * sinδγ, x * cosδφ - z * sinδφ),
d3_asin(k * cosδγ + y * sinδγ)
];
}
rotation.invert = function(λ, φ) {
var cosφ = Math.cos(φ),
x = Math.cos(λ) * cosφ,
y = Math.sin(λ) * cosφ,
z = Math.sin(φ),
k = z * cosδγ - y * sinδγ;
return [
Math.atan2(y * cosδγ + z * sinδγ, x * cosδφ + k * sinδφ),
d3_asin(k * cosδφ - x * sinδφ)
];
};
return rotation;
}