d2-ui
Version:
82 lines (71 loc) • 2.28 kB
JavaScript
import "../math/trigonometry";
import "cartesian";
import "geo";
import "rotation";
import "spherical";
d3.geo.circle = function() {
var origin = [0, 0],
angle,
precision = 6,
interpolate;
function circle() {
var center = typeof origin === "function" ? origin.apply(this, arguments) : origin,
rotate = d3_geo_rotation(-center[0] * d3_radians, -center[1] * d3_radians, 0).invert,
ring = [];
interpolate(null, null, 1, {
point: function(x, y) {
ring.push(x = rotate(x, y));
x[0] *= d3_degrees, x[1] *= d3_degrees;
}
});
return {type: "Polygon", coordinates: [ring]};
}
circle.origin = function(x) {
if (!arguments.length) return origin;
origin = x;
return circle;
};
circle.angle = function(x) {
if (!arguments.length) return angle;
interpolate = d3_geo_circleInterpolate((angle = +x) * d3_radians, precision * d3_radians);
return circle;
};
circle.precision = function(_) {
if (!arguments.length) return precision;
interpolate = d3_geo_circleInterpolate(angle * d3_radians, (precision = +_) * d3_radians);
return circle;
};
return circle.angle(90);
};
// Interpolates along a circle centered at [0°, 0°], with a given radius and
// precision.
function d3_geo_circleInterpolate(radius, precision) {
var cr = Math.cos(radius),
sr = Math.sin(radius);
return function(from, to, direction, listener) {
var step = direction * precision;
if (from != null) {
from = d3_geo_circleAngle(cr, from);
to = d3_geo_circleAngle(cr, to);
if (direction > 0 ? from < to: from > to) from += direction * τ;
} else {
from = radius + direction * τ;
to = radius - 0.5 * step;
}
for (var point, t = from; direction > 0 ? t > to : t < to; t -= step) {
listener.point((point = d3_geo_spherical([
cr,
-sr * Math.cos(t),
-sr * Math.sin(t)
]))[0], point[1]);
}
};
}
// Signed angle of a cartesian point relative to [cr, 0, 0].
function d3_geo_circleAngle(cr, point) {
var a = d3_geo_cartesian(point);
a[0] -= cr;
d3_geo_cartesianNormalize(a);
var angle = d3_acos(-a[1]);
return ((-a[2] < 0 ? -angle : angle) + 2 * Math.PI - ε) % (2 * Math.PI);
}