UNPKG

d2-ui

Version:
1,492 lines (1,316 loc) 81.9 kB
/** * Copyright (c) 2014-2015, Facebook, Inc. * All rights reserved. * * This source code is licensed under the BSD-style license found in the * LICENSE file in the root directory of this source tree. An additional grant * of patent rights can be found in the PATENTS file in the same directory. */ /** * Immutable data encourages pure functions (data-in, data-out) and lends itself * to much simpler application development and enabling techniques from * functional programming such as lazy evaluation. * * While designed to bring these powerful functional concepts to JavaScript, it * presents an Object-Oriented API familiar to Javascript engineers and closely * mirroring that of Array, Map, and Set. It is easy and efficient to convert to * and from plain Javascript types. * Note: all examples are presented in [ES6][]. To run in all browsers, they * need to be translated to ES3. For example: * * // ES6 * foo.map(x => x * x); * // ES3 * foo.map(function (x) { return x * x; }); * * [ES6]: https://developer.mozilla.org/en-US/docs/Web/JavaScript/New_in_JavaScript/ECMAScript_6_support_in_Mozilla */ /** * Deeply converts plain JS objects and arrays to Immutable Maps and Lists. * * If a `reviver` is optionally provided, it will be called with every * collection as a Seq (beginning with the most nested collections * and proceeding to the top-level collection itself), along with the key * refering to each collection and the parent JS object provided as `this`. * For the top level, object, the key will be `""`. This `reviver` is expected * to return a new Immutable Iterable, allowing for custom conversions from * deep JS objects. * * This example converts JSON to List and OrderedMap: * * Immutable.fromJS({a: {b: [10, 20, 30]}, c: 40}, function (key, value) { * var isIndexed = Immutable.Iterable.isIndexed(value); * return isIndexed ? value.toList() : value.toOrderedMap(); * }); * * // true, "b", {b: [10, 20, 30]} * // false, "a", {a: {b: [10, 20, 30]}, c: 40} * // false, "", {"": {a: {b: [10, 20, 30]}, c: 40}} * * If `reviver` is not provided, the default behavior will convert Arrays into * Lists and Objects into Maps. * * `reviver` acts similarly to the [same parameter in `JSON.parse`][1]. * * `Immutable.fromJS` is conservative in its conversion. It will only convert * arrays which pass `Array.isArray` to Lists, and only raw objects (no custom * prototype) to Map. * * Keep in mind, when using JS objects to construct Immutable Maps, that * JavaScript Object properties are always strings, even if written in a * quote-less shorthand, while Immutable Maps accept keys of any type. * * ```js * var obj = { 1: "one" }; * Object.keys(obj); // [ "1" ] * obj["1"]; // "one" * obj[1]; // "one" * * var map = Map(obj); * map.get("1"); // "one" * map.get(1); // undefined * ``` * * Property access for JavaScript Objects first converts the key to a string, * but since Immutable Map keys can be of any type the argument to `get()` is * not altered. * * [1]: https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/JSON/parse#Example.3A_Using_the_reviver_parameter * "Using the reviver parameter" */ export function fromJS( json: any, reviver?: (k: any, v: Iterable<any, any>) => any ): any; /** * Value equality check with semantics similar to `Object.is`, but treats * Immutable `Iterable`s as values, equal if the second `Iterable` includes * equivalent values. * * It's used throughout Immutable when checking for equality, including `Map` * key equality and `Set` membership. * * var map1 = Immutable.Map({a:1, b:1, c:1}); * var map2 = Immutable.Map({a:1, b:1, c:1}); * assert(map1 !== map2); * assert(Object.is(map1, map2) === false); * assert(Immutable.is(map1, map2) === true); * * Note: Unlike `Object.is`, `Immutable.is` assumes `0` and `-0` are the same * value, matching the behavior of ES6 Map key equality. */ export function is(first: any, second: any): boolean; /** * Lists are ordered indexed dense collections, much like a JavaScript * Array. * * Lists are immutable and fully persistent with O(log32 N) gets and sets, * and O(1) push and pop. * * Lists implement Deque, with efficient addition and removal from both the * end (`push`, `pop`) and beginning (`unshift`, `shift`). * * Unlike a JavaScript Array, there is no distinction between an * "unset" index and an index set to `undefined`. `List#forEach` visits all * indices from 0 to size, regardless of whether they were explicitly defined. */ export module List { /** * True if the provided value is a List */ function isList(maybeList: any): boolean; /** * Creates a new List containing `values`. */ function of<T>(...values: T[]): List<T>; } /** * Create a new immutable List containing the values of the provided * iterable-like. */ export function List<T>(): List<T>; export function List<T>(iter: Iterable.Indexed<T>): List<T>; export function List<T>(iter: Iterable.Set<T>): List<T>; export function List<K, V>(iter: Iterable.Keyed<K, V>): List</*[K,V]*/any>; export function List<T>(array: Array<T>): List<T>; export function List<T>(iterator: Iterator<T>): List<T>; export function List<T>(iterable: /*Iterable<T>*/Object): List<T>; export interface List<T> extends Collection.Indexed<T> { // Persistent changes /** * Returns a new List which includes `value` at `index`. If `index` already * exists in this List, it will be replaced. * * `index` may be a negative number, which indexes back from the end of the * List. `v.set(-1, "value")` sets the last item in the List. * * If `index` larger than `size`, the returned List's `size` will be large * enough to include the `index`. */ set(index: number, value: T): List<T>; /** * Returns a new List which excludes this `index` and with a size 1 less * than this List. Values at indices above `index` are shifted down by 1 to * fill the position. * * This is synonymous with `list.splice(index, 1)`. * * `index` may be a negative number, which indexes back from the end of the * List. `v.delete(-1)` deletes the last item in the List. * * Note: `delete` cannot be safely used in IE8 * @alias remove */ delete(index: number): List<T>; remove(index: number): List<T>; /** * Returns a new List with `value` at `index` with a size 1 more than this * List. Values at indices above `index` are shifted over by 1. * * This is synonymous with `list.splice(index, 0, value) */ insert(index: number, value: T): List<T>; /** * Returns a new List with 0 size and no values. */ clear(): List<T>; /** * Returns a new List with the provided `values` appended, starting at this * List's `size`. */ push(...values: T[]): List<T>; /** * Returns a new List with a size ones less than this List, excluding * the last index in this List. * * Note: this differs from `Array#pop` because it returns a new * List rather than the removed value. Use `last()` to get the last value * in this List. */ pop(): List<T>; /** * Returns a new List with the provided `values` prepended, shifting other * values ahead to higher indices. */ unshift(...values: T[]): List<T>; /** * Returns a new List with a size ones less than this List, excluding * the first index in this List, shifting all other values to a lower index. * * Note: this differs from `Array#shift` because it returns a new * List rather than the removed value. Use `first()` to get the first * value in this List. */ shift(): List<T>; /** * Returns a new List with an updated value at `index` with the return * value of calling `updater` with the existing value, or `notSetValue` if * `index` was not set. If called with a single argument, `updater` is * called with the List itself. * * `index` may be a negative number, which indexes back from the end of the * List. `v.update(-1)` updates the last item in the List. * * @see `Map#update` */ update(updater: (value: List<T>) => List<T>): List<T>; update(index: number, updater: (value: T) => T): List<T>; update(index: number, notSetValue: T, updater: (value: T) => T): List<T>; /** * @see `Map#merge` */ merge(...iterables: Iterable.Indexed<T>[]): List<T>; merge(...iterables: Array<T>[]): List<T>; /** * @see `Map#mergeWith` */ mergeWith( merger: (previous?: T, next?: T, key?: number) => T, ...iterables: Iterable.Indexed<T>[] ): List<T>; mergeWith( merger: (previous?: T, next?: T, key?: number) => T, ...iterables: Array<T>[] ): List<T>; /** * @see `Map#mergeDeep` */ mergeDeep(...iterables: Iterable.Indexed<T>[]): List<T>; mergeDeep(...iterables: Array<T>[]): List<T>; /** * @see `Map#mergeDeepWith` */ mergeDeepWith( merger: (previous?: T, next?: T, key?: number) => T, ...iterables: Iterable.Indexed<T>[] ): List<T>; mergeDeepWith( merger: (previous?: T, next?: T, key?: number) => T, ...iterables: Array<T>[] ): List<T>; /** * Returns a new List with size `size`. If `size` is less than this * List's size, the new List will exclude values at the higher indices. * If `size` is greater than this List's size, the new List will have * undefined values for the newly available indices. * * When building a new List and the final size is known up front, `setSize` * used in conjunction with `withMutations` may result in the more * performant construction. */ setSize(size: number): List<T>; // Deep persistent changes /** * Returns a new List having set `value` at this `keyPath`. If any keys in * `keyPath` do not exist, a new immutable Map will be created at that key. * * Index numbers are used as keys to determine the path to follow in * the List. */ setIn(keyPath: Array<any>, value: any): List<T>; setIn(keyPath: Iterable<any, any>, value: any): List<T>; /** * Returns a new List having removed the value at this `keyPath`. If any * keys in `keyPath` do not exist, no change will occur. * * @alias removeIn */ deleteIn(keyPath: Array<any>): List<T>; deleteIn(keyPath: Iterable<any, any>): List<T>; removeIn(keyPath: Array<any>): List<T>; removeIn(keyPath: Iterable<any, any>): List<T>; /** * @see `Map#updateIn` */ updateIn( keyPath: Array<any>, updater: (value: any) => any ): List<T>; updateIn( keyPath: Array<any>, notSetValue: any, updater: (value: any) => any ): List<T>; updateIn( keyPath: Iterable<any, any>, updater: (value: any) => any ): List<T>; updateIn( keyPath: Iterable<any, any>, notSetValue: any, updater: (value: any) => any ): List<T>; /** * @see `Map#mergeIn` */ mergeIn( keyPath: Iterable<any, any>, ...iterables: Iterable.Indexed<T>[] ): List<T>; mergeIn( keyPath: Array<any>, ...iterables: Iterable.Indexed<T>[] ): List<T>; mergeIn( keyPath: Array<any>, ...iterables: Array<T>[] ): List<T>; /** * @see `Map#mergeDeepIn` */ mergeDeepIn( keyPath: Iterable<any, any>, ...iterables: Iterable.Indexed<T>[] ): List<T>; mergeDeepIn( keyPath: Array<any>, ...iterables: Iterable.Indexed<T>[] ): List<T>; mergeDeepIn( keyPath: Array<any>, ...iterables: Array<T>[] ): List<T>; // Transient changes /** * Note: Not all methods can be used on a mutable collection or within * `withMutations`! Only `set`, `push`, `pop`, `shift`, `unshift` and * `merge` may be used mutatively. * * @see `Map#withMutations` */ withMutations(mutator: (mutable: List<T>) => any): List<T>; /** * @see `Map#asMutable` */ asMutable(): List<T>; /** * @see `Map#asImmutable` */ asImmutable(): List<T>; } /** * Immutable Map is an unordered Iterable.Keyed of (key, value) pairs with * `O(log32 N)` gets and `O(log32 N)` persistent sets. * * Iteration order of a Map is undefined, however is stable. Multiple * iterations of the same Map will iterate in the same order. * * Map's keys can be of any type, and use `Immutable.is` to determine key * equality. This allows the use of any value (including NaN) as a key. * * Because `Immutable.is` returns equality based on value semantics, and * Immutable collections are treated as values, any Immutable collection may * be used as a key. * * Map().set(List.of(1), 'listofone').get(List.of(1)); * // 'listofone' * * Any JavaScript object may be used as a key, however strict identity is used * to evaluate key equality. Two similar looking objects will represent two * different keys. * * Implemented by a hash-array mapped trie. */ export module Map { /** * True if the provided value is a Map */ function isMap(maybeMap: any): boolean; /** * Creates a new Map from alternating keys and values */ function of(...keyValues: any[]): Map<any, any>; } /** * Creates a new Immutable Map. * * Created with the same key value pairs as the provided Iterable.Keyed or * JavaScript Object or expects an Iterable of [K, V] tuple entries. * * var newMap = Map({key: "value"}); * var newMap = Map([["key", "value"]]); * * Keep in mind, when using JS objects to construct Immutable Maps, that * JavaScript Object properties are always strings, even if written in a * quote-less shorthand, while Immutable Maps accept keys of any type. * * ```js * var obj = { 1: "one" }; * Object.keys(obj); // [ "1" ] * obj["1"]; // "one" * obj[1]; // "one" * * var map = Map(obj); * map.get("1"); // "one" * map.get(1); // undefined * ``` * * Property access for JavaScript Objects first converts the key to a string, * but since Immutable Map keys can be of any type the argument to `get()` is * not altered. */ export function Map<K, V>(): Map<K, V>; export function Map<K, V>(iter: Iterable.Keyed<K, V>): Map<K, V>; export function Map<K, V>(iter: Iterable<any, /*[K,V]*/Array<any>>): Map<K, V>; export function Map<K, V>(array: Array</*[K,V]*/Array<any>>): Map<K, V>; export function Map<V>(obj: {[key: string]: V}): Map<string, V>; export function Map<K, V>(iterator: Iterator</*[K,V]*/Array<any>>): Map<K, V>; export function Map<K, V>(iterable: /*Iterable<[K,V]>*/Object): Map<K, V>; export interface Map<K, V> extends Collection.Keyed<K, V> { // Persistent changes /** * Returns a new Map also containing the new key, value pair. If an equivalent * key already exists in this Map, it will be replaced. */ set(key: K, value: V): Map<K, V>; /** * Returns a new Map which excludes this `key`. * * Note: `delete` cannot be safely used in IE8, but is provided to mirror * the ES6 collection API. * @alias remove */ delete(key: K): Map<K, V>; remove(key: K): Map<K, V>; /** * Returns a new Map containing no keys or values. */ clear(): Map<K, V>; /** * Returns a new Map having updated the value at this `key` with the return * value of calling `updater` with the existing value, or `notSetValue` if * the key was not set. If called with only a single argument, `updater` is * called with the Map itself. * * Equivalent to: `map.set(key, updater(map.get(key, notSetValue)))`. */ update(updater: (value: Map<K, V>) => Map<K, V>): Map<K, V>; update(key: K, updater: (value: V) => V): Map<K, V>; update(key: K, notSetValue: V, updater: (value: V) => V): Map<K, V>; /** * Returns a new Map resulting from merging the provided Iterables * (or JS objects) into this Map. In other words, this takes each entry of * each iterable and sets it on this Map. * * If any of the values provided to `merge` are not Iterable (would return * false for `Immutable.Iterable.isIterable`) then they are deeply converted * via `Immutable.fromJS` before being merged. However, if the value is an * Iterable but includes non-iterable JS objects or arrays, those nested * values will be preserved. * * var x = Immutable.Map({a: 10, b: 20, c: 30}); * var y = Immutable.Map({b: 40, a: 50, d: 60}); * x.merge(y) // { a: 50, b: 40, c: 30, d: 60 } * y.merge(x) // { b: 20, a: 10, d: 60, c: 30 } * */ merge(...iterables: Iterable<K, V>[]): Map<K, V>; merge(...iterables: {[key: string]: V}[]): Map<string, V>; /** * Like `merge()`, `mergeWith()` returns a new Map resulting from merging * the provided Iterables (or JS objects) into this Map, but uses the * `merger` function for dealing with conflicts. * * var x = Immutable.Map({a: 10, b: 20, c: 30}); * var y = Immutable.Map({b: 40, a: 50, d: 60}); * x.mergeWith((prev, next) => prev / next, y) // { a: 0.2, b: 0.5, c: 30, d: 60 } * y.mergeWith((prev, next) => prev / next, x) // { b: 2, a: 5, d: 60, c: 30 } * */ mergeWith( merger: (previous?: V, next?: V, key?: K) => V, ...iterables: Iterable<K, V>[] ): Map<K, V>; mergeWith( merger: (previous?: V, next?: V, key?: K) => V, ...iterables: {[key: string]: V}[] ): Map<string, V>; /** * Like `merge()`, but when two Iterables conflict, it merges them as well, * recursing deeply through the nested data. * * var x = Immutable.fromJS({a: { x: 10, y: 10 }, b: { x: 20, y: 50 } }); * var y = Immutable.fromJS({a: { x: 2 }, b: { y: 5 }, c: { z: 3 } }); * x.mergeDeep(y) // {a: { x: 2, y: 10 }, b: { x: 20, y: 5 }, c: { z: 3 } } * */ mergeDeep(...iterables: Iterable<K, V>[]): Map<K, V>; mergeDeep(...iterables: {[key: string]: V}[]): Map<string, V>; /** * Like `mergeDeep()`, but when two non-Iterables conflict, it uses the * `merger` function to determine the resulting value. * * var x = Immutable.fromJS({a: { x: 10, y: 10 }, b: { x: 20, y: 50 } }); * var y = Immutable.fromJS({a: { x: 2 }, b: { y: 5 }, c: { z: 3 } }); * x.mergeDeepWith((prev, next) => prev / next, y) * // {a: { x: 5, y: 10 }, b: { x: 20, y: 10 }, c: { z: 3 } } * */ mergeDeepWith( merger: (previous?: V, next?: V, key?: K) => V, ...iterables: Iterable<K, V>[] ): Map<K, V>; mergeDeepWith( merger: (previous?: V, next?: V, key?: K) => V, ...iterables: {[key: string]: V}[] ): Map<string, V>; // Deep persistent changes /** * Returns a new Map having set `value` at this `keyPath`. If any keys in * `keyPath` do not exist, a new immutable Map will be created at that key. */ setIn(keyPath: Array<any>, value: any): Map<K, V>; setIn(KeyPath: Iterable<any, any>, value: any): Map<K, V>; /** * Returns a new Map having removed the value at this `keyPath`. If any keys * in `keyPath` do not exist, no change will occur. * * @alias removeIn */ deleteIn(keyPath: Array<any>): Map<K, V>; deleteIn(keyPath: Iterable<any, any>): Map<K, V>; removeIn(keyPath: Array<any>): Map<K, V>; removeIn(keyPath: Iterable<any, any>): Map<K, V>; /** * Returns a new Map having applied the `updater` to the entry found at the * keyPath. * * If any keys in `keyPath` do not exist, new Immutable `Map`s will * be created at those keys. If the `keyPath` does not already contain a * value, the `updater` function will be called with `notSetValue`, if * provided, otherwise `undefined`. * * var data = Immutable.fromJS({ a: { b: { c: 10 } } }); * data = data.updateIn(['a', 'b', 'c'], val => val * 2); * // { a: { b: { c: 20 } } } * * If the `updater` function returns the same value it was called with, then * no change will occur. This is still true if `notSetValue` is provided. * * var data1 = Immutable.fromJS({ a: { b: { c: 10 } } }); * data2 = data1.updateIn(['x', 'y', 'z'], 100, val => val); * assert(data2 === data1); * */ updateIn( keyPath: Array<any>, updater: (value: any) => any ): Map<K, V>; updateIn( keyPath: Array<any>, notSetValue: any, updater: (value: any) => any ): Map<K, V>; updateIn( keyPath: Iterable<any, any>, updater: (value: any) => any ): Map<K, V>; updateIn( keyPath: Iterable<any, any>, notSetValue: any, updater: (value: any) => any ): Map<K, V>; /** * A combination of `updateIn` and `merge`, returning a new Map, but * performing the merge at a point arrived at by following the keyPath. * In other words, these two lines are equivalent: * * x.updateIn(['a', 'b', 'c'], abc => abc.merge(y)); * x.mergeIn(['a', 'b', 'c'], y); * */ mergeIn( keyPath: Iterable<any, any>, ...iterables: Iterable<K, V>[] ): Map<K, V>; mergeIn( keyPath: Array<any>, ...iterables: Iterable<K, V>[] ): Map<K, V>; mergeIn( keyPath: Array<any>, ...iterables: {[key: string]: V}[] ): Map<string, V>; /** * A combination of `updateIn` and `mergeDeep`, returning a new Map, but * performing the deep merge at a point arrived at by following the keyPath. * In other words, these two lines are equivalent: * * x.updateIn(['a', 'b', 'c'], abc => abc.mergeDeep(y)); * x.mergeDeepIn(['a', 'b', 'c'], y); * */ mergeDeepIn( keyPath: Iterable<any, any>, ...iterables: Iterable<K, V>[] ): Map<K, V>; mergeDeepIn( keyPath: Array<any>, ...iterables: Iterable<K, V>[] ): Map<K, V>; mergeDeepIn( keyPath: Array<any>, ...iterables: {[key: string]: V}[] ): Map<string, V>; // Transient changes /** * Every time you call one of the above functions, a new immutable Map is * created. If a pure function calls a number of these to produce a final * return value, then a penalty on performance and memory has been paid by * creating all of the intermediate immutable Maps. * * If you need to apply a series of mutations to produce a new immutable * Map, `withMutations()` creates a temporary mutable copy of the Map which * can apply mutations in a highly performant manner. In fact, this is * exactly how complex mutations like `merge` are done. * * As an example, this results in the creation of 2, not 4, new Maps: * * var map1 = Immutable.Map(); * var map2 = map1.withMutations(map => { * map.set('a', 1).set('b', 2).set('c', 3); * }); * assert(map1.size === 0); * assert(map2.size === 3); * * Note: Not all methods can be used on a mutable collection or within * `withMutations`! Only `set` and `merge` may be used mutatively. * */ withMutations(mutator: (mutable: Map<K, V>) => any): Map<K, V>; /** * Another way to avoid creation of intermediate Immutable maps is to create * a mutable copy of this collection. Mutable copies *always* return `this`, * and thus shouldn't be used for equality. Your function should never return * a mutable copy of a collection, only use it internally to create a new * collection. If possible, use `withMutations` as it provides an easier to * use API. * * Note: if the collection is already mutable, `asMutable` returns itself. * * Note: Not all methods can be used on a mutable collection or within * `withMutations`! Only `set` and `merge` may be used mutatively. */ asMutable(): Map<K, V>; /** * The yin to `asMutable`'s yang. Because it applies to mutable collections, * this operation is *mutable* and returns itself. Once performed, the mutable * copy has become immutable and can be safely returned from a function. */ asImmutable(): Map<K, V>; } /** * A type of Map that has the additional guarantee that the iteration order of * entries will be the order in which they were set(). * * The iteration behavior of OrderedMap is the same as native ES6 Map and * JavaScript Object. * * Note that `OrderedMap` are more expensive than non-ordered `Map` and may * consume more memory. `OrderedMap#set` is amortized O(log32 N), but not * stable. */ export module OrderedMap { /** * True if the provided value is an OrderedMap. */ function isOrderedMap(maybeOrderedMap: any): boolean; } /** * Creates a new Immutable OrderedMap. * * Created with the same key value pairs as the provided Iterable.Keyed or * JavaScript Object or expects an Iterable of [K, V] tuple entries. * * The iteration order of key-value pairs provided to this constructor will * be preserved in the OrderedMap. * * var newOrderedMap = OrderedMap({key: "value"}); * var newOrderedMap = OrderedMap([["key", "value"]]); * */ export function OrderedMap<K, V>(): OrderedMap<K, V>; export function OrderedMap<K, V>(iter: Iterable.Keyed<K, V>): OrderedMap<K, V>; export function OrderedMap<K, V>(iter: Iterable<any, /*[K,V]*/Array<any>>): OrderedMap<K, V>; export function OrderedMap<K, V>(array: Array</*[K,V]*/Array<any>>): OrderedMap<K, V>; export function OrderedMap<V>(obj: {[key: string]: V}): OrderedMap<string, V>; export function OrderedMap<K, V>(iterator: Iterator</*[K,V]*/Array<any>>): OrderedMap<K, V>; export function OrderedMap<K, V>(iterable: /*Iterable<[K,V]>*/Object): OrderedMap<K, V>; export interface OrderedMap<K, V> extends Map<K, V> {} /** * A Collection of unique values with `O(log32 N)` adds and has. * * When iterating a Set, the entries will be (value, value) pairs. Iteration * order of a Set is undefined, however is stable. Multiple iterations of the * same Set will iterate in the same order. * * Set values, like Map keys, may be of any type. Equality is determined using * `Immutable.is`, enabling Sets to uniquely include other Immutable * collections, custom value types, and NaN. */ export module Set { /** * True if the provided value is a Set */ function isSet(maybeSet: any): boolean; /** * Creates a new Set containing `values`. */ function of<T>(...values: T[]): Set<T>; /** * `Set.fromKeys()` creates a new immutable Set containing the keys from * this Iterable or JavaScript Object. */ function fromKeys<T>(iter: Iterable<T, any>): Set<T>; function fromKeys(obj: {[key: string]: any}): Set<string>; } /** * Create a new immutable Set containing the values of the provided * iterable-like. */ export function Set<T>(): Set<T>; export function Set<T>(iter: Iterable.Set<T>): Set<T>; export function Set<T>(iter: Iterable.Indexed<T>): Set<T>; export function Set<K, V>(iter: Iterable.Keyed<K, V>): Set</*[K,V]*/any>; export function Set<T>(array: Array<T>): Set<T>; export function Set<T>(iterator: Iterator<T>): Set<T>; export function Set<T>(iterable: /*Iterable<T>*/Object): Set<T>; export interface Set<T> extends Collection.Set<T> { // Persistent changes /** * Returns a new Set which also includes this value. */ add(value: T): Set<T>; /** * Returns a new Set which excludes this value. * * Note: `delete` cannot be safely used in IE8 * @alias remove */ delete(value: T): Set<T>; remove(value: T): Set<T>; /** * Returns a new Set containing no values. */ clear(): Set<T>; /** * Returns a Set including any value from `iterables` that does not already * exist in this Set. * @alias merge */ union(...iterables: Iterable<any, T>[]): Set<T>; union(...iterables: Array<T>[]): Set<T>; merge(...iterables: Iterable<any, T>[]): Set<T>; merge(...iterables: Array<T>[]): Set<T>; /** * Returns a Set which has removed any values not also contained * within `iterables`. */ intersect(...iterables: Iterable<any, T>[]): Set<T>; intersect(...iterables: Array<T>[]): Set<T>; /** * Returns a Set excluding any values contained within `iterables`. */ subtract(...iterables: Iterable<any, T>[]): Set<T>; subtract(...iterables: Array<T>[]): Set<T>; // Transient changes /** * Note: Not all methods can be used on a mutable collection or within * `withMutations`! Only `add` may be used mutatively. * * @see `Map#withMutations` */ withMutations(mutator: (mutable: Set<T>) => any): Set<T>; /** * @see `Map#asMutable` */ asMutable(): Set<T>; /** * @see `Map#asImmutable` */ asImmutable(): Set<T>; } /** * A type of Set that has the additional guarantee that the iteration order of * values will be the order in which they were `add`ed. * * The iteration behavior of OrderedSet is the same as native ES6 Set. * * Note that `OrderedSet` are more expensive than non-ordered `Set` and may * consume more memory. `OrderedSet#add` is amortized O(log32 N), but not * stable. */ export module OrderedSet { /** * True if the provided value is an OrderedSet. */ function isOrderedSet(maybeOrderedSet: any): boolean; /** * Creates a new OrderedSet containing `values`. */ function of<T>(...values: T[]): OrderedSet<T>; /** * `OrderedSet.fromKeys()` creates a new immutable OrderedSet containing * the keys from this Iterable or JavaScript Object. */ function fromKeys<T>(iter: Iterable<T, any>): OrderedSet<T>; function fromKeys(obj: {[key: string]: any}): OrderedSet<string>; } /** * Create a new immutable OrderedSet containing the values of the provided * iterable-like. */ export function OrderedSet<T>(): OrderedSet<T>; export function OrderedSet<T>(iter: Iterable.Set<T>): OrderedSet<T>; export function OrderedSet<T>(iter: Iterable.Indexed<T>): OrderedSet<T>; export function OrderedSet<K, V>(iter: Iterable.Keyed<K, V>): OrderedSet</*[K,V]*/any>; export function OrderedSet<T>(array: Array<T>): OrderedSet<T>; export function OrderedSet<T>(iterator: Iterator<T>): OrderedSet<T>; export function OrderedSet<T>(iterable: /*Iterable<T>*/Object): OrderedSet<T>; export interface OrderedSet<T> extends Set<T> {} /** * Stacks are indexed collections which support very efficient O(1) addition * and removal from the front using `unshift(v)` and `shift()`. * * For familiarity, Stack also provides `push(v)`, `pop()`, and `peek()`, but * be aware that they also operate on the front of the list, unlike List or * a JavaScript Array. * * Note: `reverse()` or any inherent reverse traversal (`reduceRight`, * `lastIndexOf`, etc.) is not efficient with a Stack. * * Stack is implemented with a Single-Linked List. */ export module Stack { /** * True if the provided value is a Stack */ function isStack(maybeStack: any): boolean; /** * Creates a new Stack containing `values`. */ function of<T>(...values: T[]): Stack<T>; } /** * Create a new immutable Stack containing the values of the provided * iterable-like. * * The iteration order of the provided iterable is preserved in the * resulting `Stack`. */ export function Stack<T>(): Stack<T>; export function Stack<T>(iter: Iterable.Indexed<T>): Stack<T>; export function Stack<T>(iter: Iterable.Set<T>): Stack<T>; export function Stack<K, V>(iter: Iterable.Keyed<K, V>): Stack</*[K,V]*/any>; export function Stack<T>(array: Array<T>): Stack<T>; export function Stack<T>(iterator: Iterator<T>): Stack<T>; export function Stack<T>(iterable: /*Iterable<T>*/Object): Stack<T>; export interface Stack<T> extends Collection.Indexed<T> { // Reading values /** * Alias for `Stack.first()`. */ peek(): T; // Persistent changes /** * Returns a new Stack with 0 size and no values. */ clear(): Stack<T>; /** * Returns a new Stack with the provided `values` prepended, shifting other * values ahead to higher indices. * * This is very efficient for Stack. */ unshift(...values: T[]): Stack<T>; /** * Like `Stack#unshift`, but accepts a iterable rather than varargs. */ unshiftAll(iter: Iterable<any, T>): Stack<T>; unshiftAll(iter: Array<T>): Stack<T>; /** * Returns a new Stack with a size ones less than this Stack, excluding * the first item in this Stack, shifting all other values to a lower index. * * Note: this differs from `Array#shift` because it returns a new * Stack rather than the removed value. Use `first()` or `peek()` to get the * first value in this Stack. */ shift(): Stack<T>; /** * Alias for `Stack#unshift` and is not equivalent to `List#push`. */ push(...values: T[]): Stack<T>; /** * Alias for `Stack#unshiftAll`. */ pushAll(iter: Iterable<any, T>): Stack<T>; pushAll(iter: Array<T>): Stack<T>; /** * Alias for `Stack#shift` and is not equivalent to `List#pop`. */ pop(): Stack<T>; // Transient changes /** * Note: Not all methods can be used on a mutable collection or within * `withMutations`! Only `set`, `push`, and `pop` may be used mutatively. * * @see `Map#withMutations` */ withMutations(mutator: (mutable: Stack<T>) => any): Stack<T>; /** * @see `Map#asMutable` */ asMutable(): Stack<T>; /** * @see `Map#asImmutable` */ asImmutable(): Stack<T>; } /** * Returns a Seq.Indexed of numbers from `start` (inclusive) to `end` * (exclusive), by `step`, where `start` defaults to 0, `step` to 1, and `end` to * infinity. When `start` is equal to `end`, returns empty range. * * Range() // [0,1,2,3,...] * Range(10) // [10,11,12,13,...] * Range(10,15) // [10,11,12,13,14] * Range(10,30,5) // [10,15,20,25] * Range(30,10,5) // [30,25,20,15] * Range(30,30,5) // [] * */ export function Range(start?: number, end?: number, step?: number): Seq.Indexed<number>; /** * Returns a Seq.Indexed of `value` repeated `times` times. When `times` is * not defined, returns an infinite `Seq` of `value`. * * Repeat('foo') // ['foo','foo','foo',...] * Repeat('bar',4) // ['bar','bar','bar','bar'] * */ export function Repeat<T>(value: T, times?: number): Seq.Indexed<T>; /** * Creates a new Class which produces Record instances. A record is similar to * a JS object, but enforce a specific set of allowed string keys, and have * default values. * * var ABRecord = Record({a:1, b:2}) * var myRecord = new ABRecord({b:3}) * * Records always have a value for the keys they define. `remove`ing a key * from a record simply resets it to the default value for that key. * * myRecord.size // 2 * myRecord.get('a') // 1 * myRecord.get('b') // 3 * myRecordWithoutB = myRecord.remove('b') * myRecordWithoutB.get('b') // 2 * myRecordWithoutB.size // 2 * * Values provided to the constructor not found in the Record type will * be ignored. For example, in this case, ABRecord is provided a key "x" even * though only "a" and "b" have been defined. The value for "x" will be * ignored for this record. * * var myRecord = new ABRecord({b:3, x:10}) * myRecord.get('x') // undefined * * Because Records have a known set of string keys, property get access works * as expected, however property sets will throw an Error. * * Note: IE8 does not support property access. Only use `get()` when * supporting IE8. * * myRecord.b // 3 * myRecord.b = 5 // throws Error * * Record Classes can be extended as well, allowing for custom methods on your * Record. This is not a common pattern in functional environments, but is in * many JS programs. * * Note: TypeScript does not support this type of subclassing. * * class ABRecord extends Record({a:1,b:2}) { * getAB() { * return this.a + this.b; * } * } * * var myRecord = new ABRecord({b: 3}) * myRecord.getAB() // 4 * */ export module Record { export interface Class { new (): Map<string, any>; new (values: {[key: string]: any}): Map<string, any>; new (values: Iterable<string, any>): Map<string, any>; // deprecated (): Map<string, any>; (values: {[key: string]: any}): Map<string, any>; (values: Iterable<string, any>): Map<string, any>; // deprecated } } export function Record( defaultValues: {[key: string]: any}, name?: string ): Record.Class; /** * Represents a sequence of values, but may not be backed by a concrete data * structure. * * **Seq is immutable** — Once a Seq is created, it cannot be * changed, appended to, rearranged or otherwise modified. Instead, any * mutative method called on a `Seq` will return a new `Seq`. * * **Seq is lazy** — Seq does as little work as necessary to respond to any * method call. Values are often created during iteration, including implicit * iteration when reducing or converting to a concrete data structure such as * a `List` or JavaScript `Array`. * * For example, the following performs no work, because the resulting * Seq's values are never iterated: * * var oddSquares = Immutable.Seq.of(1,2,3,4,5,6,7,8) * .filter(x => x % 2).map(x => x * x); * * Once the Seq is used, it performs only the work necessary. In this * example, no intermediate data structures are ever created, filter is only * called three times, and map is only called once: * * console.log(oddSquares.get(1)); // 9 * * Seq allows for the efficient chaining of operations, * allowing for the expression of logic that can otherwise be very tedious: * * Immutable.Seq({a:1, b:1, c:1}) * .flip().map(key => key.toUpperCase()).flip().toObject(); * // Map { A: 1, B: 1, C: 1 } * * As well as expressing logic that would otherwise be memory or time limited: * * Immutable.Range(1, Infinity) * .skip(1000) * .map(n => -n) * .filter(n => n % 2 === 0) * .take(2) * .reduce((r, n) => r * n, 1); * // 1006008 * * Seq is often used to provide a rich collection API to JavaScript Object. * * Immutable.Seq({ x: 0, y: 1, z: 2 }).map(v => v * 2).toObject(); * // { x: 0, y: 2, z: 4 } */ export module Seq { /** * True if `maybeSeq` is a Seq, it is not backed by a concrete * structure such as Map, List, or Set. */ function isSeq(maybeSeq: any): boolean; /** * Returns a Seq of the values provided. Alias for `Seq.Indexed.of()`. */ function of<T>(...values: T[]): Seq.Indexed<T>; /** * `Seq` which represents key-value pairs. */ export module Keyed {} /** * Always returns a Seq.Keyed, if input is not keyed, expects an * iterable of [K, V] tuples. */ export function Keyed<K, V>(): Seq.Keyed<K, V>; export function Keyed<K, V>(seq: Iterable.Keyed<K, V>): Seq.Keyed<K, V>; export function Keyed<K, V>(seq: Iterable<any, /*[K,V]*/any>): Seq.Keyed<K, V>; export function Keyed<K, V>(array: Array</*[K,V]*/any>): Seq.Keyed<K, V>; export function Keyed<V>(obj: {[key: string]: V}): Seq.Keyed<string, V>; export function Keyed<K, V>(iterator: Iterator</*[K,V]*/any>): Seq.Keyed<K, V>; export function Keyed<K, V>(iterable: /*Iterable<[K,V]>*/Object): Seq.Keyed<K, V>; export interface Keyed<K, V> extends Seq<K, V>, Iterable.Keyed<K, V> { /** * Returns itself */ toSeq(): /*this*/Seq.Keyed<K, V> } /** * `Seq` which represents an ordered indexed list of values. */ module Indexed { /** * Provides an Seq.Indexed of the values provided. */ function of<T>(...values: T[]): Seq.Indexed<T>; } /** * Always returns Seq.Indexed, discarding associated keys and * supplying incrementing indices. */ export function Indexed<T>(): Seq.Indexed<T>; export function Indexed<T>(seq: Iterable.Indexed<T>): Seq.Indexed<T>; export function Indexed<T>(seq: Iterable.Set<T>): Seq.Indexed<T>; export function Indexed<K, V>(seq: Iterable.Keyed<K, V>): Seq.Indexed</*[K,V]*/any>; export function Indexed<T>(array: Array<T>): Seq.Indexed<T>; export function Indexed<T>(iterator: Iterator<T>): Seq.Indexed<T>; export function Indexed<T>(iterable: /*Iterable<T>*/Object): Seq.Indexed<T>; export interface Indexed<T> extends Seq<number, T>, Iterable.Indexed<T> { /** * Returns itself */ toSeq(): /*this*/Seq.Indexed<T> } /** * `Seq` which represents a set of values. * * Because `Seq` are often lazy, `Seq.Set` does not provide the same guarantee * of value uniqueness as the concrete `Set`. */ export module Set { /** * Returns a Seq.Set of the provided values */ function of<T>(...values: T[]): Seq.Set<T>; } /** * Always returns a Seq.Set, discarding associated indices or keys. */ export function Set<T>(): Seq.Set<T>; export function Set<T>(seq: Iterable.Set<T>): Seq.Set<T>; export function Set<T>(seq: Iterable.Indexed<T>): Seq.Set<T>; export function Set<K, V>(seq: Iterable.Keyed<K, V>): Seq.Set</*[K,V]*/any>; export function Set<T>(array: Array<T>): Seq.Set<T>; export function Set<T>(iterator: Iterator<T>): Seq.Set<T>; export function Set<T>(iterable: /*Iterable<T>*/Object): Seq.Set<T>; export interface Set<T> extends Seq<T, T>, Iterable.Set<T> { /** * Returns itself */ toSeq(): /*this*/Seq.Set<T> } } /** * Creates a Seq. * * Returns a particular kind of `Seq` based on the input. * * * If a `Seq`, that same `Seq`. * * If an `Iterable`, a `Seq` of the same kind (Keyed, Indexed, or Set). * * If an Array-like, an `Seq.Indexed`. * * If an Object with an Iterator, an `Seq.Indexed`. * * If an Iterator, an `Seq.Indexed`. * * If an Object, a `Seq.Keyed`. * */ export function Seq<K, V>(): Seq<K, V>; export function Seq<K, V>(seq: Seq<K, V>): Seq<K, V>; export function Seq<K, V>(iterable: Iterable<K, V>): Seq<K, V>; export function Seq<T>(array: Array<T>): Seq.Indexed<T>; export function Seq<V>(obj: {[key: string]: V}): Seq.Keyed<string, V>; export function Seq<T>(iterator: Iterator<T>): Seq.Indexed<T>; export function Seq<T>(iterable: /*ES6Iterable<T>*/Object): Seq.Indexed<T>; export interface Seq<K, V> extends Iterable<K, V> { /** * Some Seqs can describe their size lazily. When this is the case, * size will be an integer. Otherwise it will be undefined. * * For example, Seqs returned from `map()` or `reverse()` * preserve the size of the original `Seq` while `filter()` does not. * * Note: `Range`, `Repeat` and `Seq`s made from `Array`s and `Object`s will * always have a size. */ size: number/*?*/; // Force evaluation /** * Because Sequences are lazy and designed to be chained together, they do * not cache their results. For example, this map function is called a total * of 6 times, as each `join` iterates the Seq of three values. * * var squares = Seq.of(1,2,3).map(x => x * x); * squares.join() + squares.join(); * * If you know a `Seq` will be used multiple times, it may be more * efficient to first cache it in memory. Here, the map function is called * only 3 times. * * var squares = Seq.of(1,2,3).map(x => x * x).cacheResult(); * squares.join() + squares.join(); * * Use this method judiciously, as it must fully evaluate a Seq which can be * a burden on memory and possibly performance. * * Note: after calling `cacheResult`, a Seq will always have a `size`. */ cacheResult(): /*this*/Seq<K, V>; } /** * The `Iterable` is a set of (key, value) entries which can be iterated, and * is the base class for all collections in `immutable`, allowing them to * make use of all the Iterable methods (such as `map` and `filter`). * * Note: An iterable is always iterated in the same order, however that order * may not always be well defined, as is the case for the `Map` and `Set`. */ export module Iterable { /** * True if `maybeIterable` is an Iterable, or any of its subclasses. */ function isIterable(maybeIterable: any): boolean; /** * True if `maybeKeyed` is an Iterable.Keyed, or any of its subclasses. */ function isKeyed(maybeKeyed: any): boolean; /** * True if `maybeIndexed` is a Iterable.Indexed, or any of its subclasses. */ function isIndexed(maybeIndexed: any): boolean; /** * True if `maybeAssociative` is either a keyed or indexed Iterable. */ function isAssociative(maybeAssociative: any): boolean; /** * True if `maybeOrdered` is an Iterable where iteration order is well * defined. True for Iterable.Indexed as well as OrderedMap and OrderedSet. */ function isOrdered(maybeOrdered: any): boolean; /** * Keyed Iterables have discrete keys tied to each value. * * When iterating `Iterable.Keyed`, each iteration will yield a `[K, V]` * tuple, in other words, `Iterable#entries` is the default iterator for * Keyed Iterables. */ export module Keyed {} /** * Creates an Iterable.Keyed * * Similar to `Iterable()`, however it expects iterable-likes of [K, V] * tuples if not constructed from a Iterable.Keyed or JS Object. */ export function Keyed<K, V>(iter: Iterable.Keyed<K, V>): Iterable.Keyed<K, V>; export function Keyed<K, V>(iter: Iterable<any, /*[K,V]*/any>): Iterable.Keyed<K, V>; export function Keyed<K, V>(array: Array</*[K,V]*/any>): Iterable.Keyed<K, V>; export function Keyed<V>(obj: {[key: string]: V}): Iterable.Keyed<string, V>; export function Keyed<K, V>(iterator: Iterator</*[K,V]*/any>): Iterable.Keyed<K, V>; export function Keyed<K, V>(iterable: /*Iterable<[K,V]>*/Object): Iterable.Keyed<K, V>; export interface Keyed<K, V> extends Iterable<K, V> { /** * Returns Seq.Keyed. * @override */ toSeq(): Seq.Keyed<K, V>; // Sequence functions /** * Returns a new Iterable.Keyed of the same type where the keys and values * have been flipped. * * Seq({ a: 'z', b: 'y' }).flip() // { z: 'a', y: 'b' } * */ flip(): /*this*/Iterable.Keyed<V, K>; /** * Returns a new Iterable.Keyed of the same type with keys passed through * a `mapper` function. * * Seq({ a: 1, b: 2 }) * .mapKeys(x => x.toUpperCase()) * // Seq { A: 1, B: 2 } * */ mapKeys<M>( mapper: (key?: K, value?: V, iter?: /*this*/Iterable.Keyed<K, V>) => M, context?: any ): /*this*/Iterable.Keyed<M, V>; /** * Returns a new Iterable.Keyed of the same type with entries * ([key, value] tuples) passed through a `mapper` function. * * Seq({ a: 1, b: 2 }) * .mapEntries(([k, v]) => [k.toUpperCase(), v * 2]) * // Seq { A: 2, B: 4 } * */ mapEntries<KM, VM>( mapper: ( entry?: /*(K, V)*/Array<any>, index?: number, iter?: /*this*/Iterable.Keyed<K, V> ) => /*[KM, VM]*/Array<any>, context?: any ): /*this*/Iterable.Keyed<KM, VM>; } /** * Indexed Iterables have incrementing numeric keys. They exhibit * slightly different behavior than `Iterable.Keyed` for some methods in order * to better mirror the behavior of JavaScript's `Array`, and add methods * which do not make sense on non-indexed Iterables such as `indexOf`. * * Unlike JavaScript arrays, `Iterable.Indexed`s are always dense. "Unset" * indices and `undefined` indices are indistinguishable, and all indices from * 0 to `size` are visited when iterated. * * All Iterable.Indexed methods return re-indexed Iterables. In other words, * indices always start at 0 and increment until size. If you wish to * preserve indices, using them as keys, convert to a Iterable.Keyed by * calling `toKeyedSeq`. */ export module Indexed