d2-ui
Version:
1,492 lines (1,316 loc) • 81.9 kB
TypeScript
/**
* Copyright (c) 2014-2015, Facebook, Inc.
* All rights reserved.
*
* This source code is licensed under the BSD-style license found in the
* LICENSE file in the root directory of this source tree. An additional grant
* of patent rights can be found in the PATENTS file in the same directory.
*/
/**
* Immutable data encourages pure functions (data-in, data-out) and lends itself
* to much simpler application development and enabling techniques from
* functional programming such as lazy evaluation.
*
* While designed to bring these powerful functional concepts to JavaScript, it
* presents an Object-Oriented API familiar to Javascript engineers and closely
* mirroring that of Array, Map, and Set. It is easy and efficient to convert to
* and from plain Javascript types.
* Note: all examples are presented in [ES6][]. To run in all browsers, they
* need to be translated to ES3. For example:
*
* // ES6
* foo.map(x => x * x);
* // ES3
* foo.map(function (x) { return x * x; });
*
* [ES6]: https://developer.mozilla.org/en-US/docs/Web/JavaScript/New_in_JavaScript/ECMAScript_6_support_in_Mozilla
*/
/**
* Deeply converts plain JS objects and arrays to Immutable Maps and Lists.
*
* If a `reviver` is optionally provided, it will be called with every
* collection as a Seq (beginning with the most nested collections
* and proceeding to the top-level collection itself), along with the key
* refering to each collection and the parent JS object provided as `this`.
* For the top level, object, the key will be `""`. This `reviver` is expected
* to return a new Immutable Iterable, allowing for custom conversions from
* deep JS objects.
*
* This example converts JSON to List and OrderedMap:
*
* Immutable.fromJS({a: {b: [10, 20, 30]}, c: 40}, function (key, value) {
* var isIndexed = Immutable.Iterable.isIndexed(value);
* return isIndexed ? value.toList() : value.toOrderedMap();
* });
*
* // true, "b", {b: [10, 20, 30]}
* // false, "a", {a: {b: [10, 20, 30]}, c: 40}
* // false, "", {"": {a: {b: [10, 20, 30]}, c: 40}}
*
* If `reviver` is not provided, the default behavior will convert Arrays into
* Lists and Objects into Maps.
*
* `reviver` acts similarly to the [same parameter in `JSON.parse`][1].
*
* `Immutable.fromJS` is conservative in its conversion. It will only convert
* arrays which pass `Array.isArray` to Lists, and only raw objects (no custom
* prototype) to Map.
*
* Keep in mind, when using JS objects to construct Immutable Maps, that
* JavaScript Object properties are always strings, even if written in a
* quote-less shorthand, while Immutable Maps accept keys of any type.
*
* ```js
* var obj = { 1: "one" };
* Object.keys(obj); // [ "1" ]
* obj["1"]; // "one"
* obj[1]; // "one"
*
* var map = Map(obj);
* map.get("1"); // "one"
* map.get(1); // undefined
* ```
*
* Property access for JavaScript Objects first converts the key to a string,
* but since Immutable Map keys can be of any type the argument to `get()` is
* not altered.
*
* [1]: https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/JSON/parse#Example.3A_Using_the_reviver_parameter
* "Using the reviver parameter"
*/
export function fromJS(
json: any,
reviver?: (k: any, v: Iterable<any, any>) => any
): any;
/**
* Value equality check with semantics similar to `Object.is`, but treats
* Immutable `Iterable`s as values, equal if the second `Iterable` includes
* equivalent values.
*
* It's used throughout Immutable when checking for equality, including `Map`
* key equality and `Set` membership.
*
* var map1 = Immutable.Map({a:1, b:1, c:1});
* var map2 = Immutable.Map({a:1, b:1, c:1});
* assert(map1 !== map2);
* assert(Object.is(map1, map2) === false);
* assert(Immutable.is(map1, map2) === true);
*
* Note: Unlike `Object.is`, `Immutable.is` assumes `0` and `-0` are the same
* value, matching the behavior of ES6 Map key equality.
*/
export function is(first: any, second: any): boolean;
/**
* Lists are ordered indexed dense collections, much like a JavaScript
* Array.
*
* Lists are immutable and fully persistent with O(log32 N) gets and sets,
* and O(1) push and pop.
*
* Lists implement Deque, with efficient addition and removal from both the
* end (`push`, `pop`) and beginning (`unshift`, `shift`).
*
* Unlike a JavaScript Array, there is no distinction between an
* "unset" index and an index set to `undefined`. `List#forEach` visits all
* indices from 0 to size, regardless of whether they were explicitly defined.
*/
export module List {
/**
* True if the provided value is a List
*/
function isList(maybeList: any): boolean;
/**
* Creates a new List containing `values`.
*/
function of<T>(...values: T[]): List<T>;
}
/**
* Create a new immutable List containing the values of the provided
* iterable-like.
*/
export function List<T>(): List<T>;
export function List<T>(iter: Iterable.Indexed<T>): List<T>;
export function List<T>(iter: Iterable.Set<T>): List<T>;
export function List<K, V>(iter: Iterable.Keyed<K, V>): List</*[K,V]*/any>;
export function List<T>(array: Array<T>): List<T>;
export function List<T>(iterator: Iterator<T>): List<T>;
export function List<T>(iterable: /*Iterable<T>*/Object): List<T>;
export interface List<T> extends Collection.Indexed<T> {
// Persistent changes
/**
* Returns a new List which includes `value` at `index`. If `index` already
* exists in this List, it will be replaced.
*
* `index` may be a negative number, which indexes back from the end of the
* List. `v.set(-1, "value")` sets the last item in the List.
*
* If `index` larger than `size`, the returned List's `size` will be large
* enough to include the `index`.
*/
set(index: number, value: T): List<T>;
/**
* Returns a new List which excludes this `index` and with a size 1 less
* than this List. Values at indices above `index` are shifted down by 1 to
* fill the position.
*
* This is synonymous with `list.splice(index, 1)`.
*
* `index` may be a negative number, which indexes back from the end of the
* List. `v.delete(-1)` deletes the last item in the List.
*
* Note: `delete` cannot be safely used in IE8
* @alias remove
*/
delete(index: number): List<T>;
remove(index: number): List<T>;
/**
* Returns a new List with `value` at `index` with a size 1 more than this
* List. Values at indices above `index` are shifted over by 1.
*
* This is synonymous with `list.splice(index, 0, value)
*/
insert(index: number, value: T): List<T>;
/**
* Returns a new List with 0 size and no values.
*/
clear(): List<T>;
/**
* Returns a new List with the provided `values` appended, starting at this
* List's `size`.
*/
push(...values: T[]): List<T>;
/**
* Returns a new List with a size ones less than this List, excluding
* the last index in this List.
*
* Note: this differs from `Array#pop` because it returns a new
* List rather than the removed value. Use `last()` to get the last value
* in this List.
*/
pop(): List<T>;
/**
* Returns a new List with the provided `values` prepended, shifting other
* values ahead to higher indices.
*/
unshift(...values: T[]): List<T>;
/**
* Returns a new List with a size ones less than this List, excluding
* the first index in this List, shifting all other values to a lower index.
*
* Note: this differs from `Array#shift` because it returns a new
* List rather than the removed value. Use `first()` to get the first
* value in this List.
*/
shift(): List<T>;
/**
* Returns a new List with an updated value at `index` with the return
* value of calling `updater` with the existing value, or `notSetValue` if
* `index` was not set. If called with a single argument, `updater` is
* called with the List itself.
*
* `index` may be a negative number, which indexes back from the end of the
* List. `v.update(-1)` updates the last item in the List.
*
* @see `Map#update`
*/
update(updater: (value: List<T>) => List<T>): List<T>;
update(index: number, updater: (value: T) => T): List<T>;
update(index: number, notSetValue: T, updater: (value: T) => T): List<T>;
/**
* @see `Map#merge`
*/
merge(...iterables: Iterable.Indexed<T>[]): List<T>;
merge(...iterables: Array<T>[]): List<T>;
/**
* @see `Map#mergeWith`
*/
mergeWith(
merger: (previous?: T, next?: T, key?: number) => T,
...iterables: Iterable.Indexed<T>[]
): List<T>;
mergeWith(
merger: (previous?: T, next?: T, key?: number) => T,
...iterables: Array<T>[]
): List<T>;
/**
* @see `Map#mergeDeep`
*/
mergeDeep(...iterables: Iterable.Indexed<T>[]): List<T>;
mergeDeep(...iterables: Array<T>[]): List<T>;
/**
* @see `Map#mergeDeepWith`
*/
mergeDeepWith(
merger: (previous?: T, next?: T, key?: number) => T,
...iterables: Iterable.Indexed<T>[]
): List<T>;
mergeDeepWith(
merger: (previous?: T, next?: T, key?: number) => T,
...iterables: Array<T>[]
): List<T>;
/**
* Returns a new List with size `size`. If `size` is less than this
* List's size, the new List will exclude values at the higher indices.
* If `size` is greater than this List's size, the new List will have
* undefined values for the newly available indices.
*
* When building a new List and the final size is known up front, `setSize`
* used in conjunction with `withMutations` may result in the more
* performant construction.
*/
setSize(size: number): List<T>;
// Deep persistent changes
/**
* Returns a new List having set `value` at this `keyPath`. If any keys in
* `keyPath` do not exist, a new immutable Map will be created at that key.
*
* Index numbers are used as keys to determine the path to follow in
* the List.
*/
setIn(keyPath: Array<any>, value: any): List<T>;
setIn(keyPath: Iterable<any, any>, value: any): List<T>;
/**
* Returns a new List having removed the value at this `keyPath`. If any
* keys in `keyPath` do not exist, no change will occur.
*
* @alias removeIn
*/
deleteIn(keyPath: Array<any>): List<T>;
deleteIn(keyPath: Iterable<any, any>): List<T>;
removeIn(keyPath: Array<any>): List<T>;
removeIn(keyPath: Iterable<any, any>): List<T>;
/**
* @see `Map#updateIn`
*/
updateIn(
keyPath: Array<any>,
updater: (value: any) => any
): List<T>;
updateIn(
keyPath: Array<any>,
notSetValue: any,
updater: (value: any) => any
): List<T>;
updateIn(
keyPath: Iterable<any, any>,
updater: (value: any) => any
): List<T>;
updateIn(
keyPath: Iterable<any, any>,
notSetValue: any,
updater: (value: any) => any
): List<T>;
/**
* @see `Map#mergeIn`
*/
mergeIn(
keyPath: Iterable<any, any>,
...iterables: Iterable.Indexed<T>[]
): List<T>;
mergeIn(
keyPath: Array<any>,
...iterables: Iterable.Indexed<T>[]
): List<T>;
mergeIn(
keyPath: Array<any>,
...iterables: Array<T>[]
): List<T>;
/**
* @see `Map#mergeDeepIn`
*/
mergeDeepIn(
keyPath: Iterable<any, any>,
...iterables: Iterable.Indexed<T>[]
): List<T>;
mergeDeepIn(
keyPath: Array<any>,
...iterables: Iterable.Indexed<T>[]
): List<T>;
mergeDeepIn(
keyPath: Array<any>,
...iterables: Array<T>[]
): List<T>;
// Transient changes
/**
* Note: Not all methods can be used on a mutable collection or within
* `withMutations`! Only `set`, `push`, `pop`, `shift`, `unshift` and
* `merge` may be used mutatively.
*
* @see `Map#withMutations`
*/
withMutations(mutator: (mutable: List<T>) => any): List<T>;
/**
* @see `Map#asMutable`
*/
asMutable(): List<T>;
/**
* @see `Map#asImmutable`
*/
asImmutable(): List<T>;
}
/**
* Immutable Map is an unordered Iterable.Keyed of (key, value) pairs with
* `O(log32 N)` gets and `O(log32 N)` persistent sets.
*
* Iteration order of a Map is undefined, however is stable. Multiple
* iterations of the same Map will iterate in the same order.
*
* Map's keys can be of any type, and use `Immutable.is` to determine key
* equality. This allows the use of any value (including NaN) as a key.
*
* Because `Immutable.is` returns equality based on value semantics, and
* Immutable collections are treated as values, any Immutable collection may
* be used as a key.
*
* Map().set(List.of(1), 'listofone').get(List.of(1));
* // 'listofone'
*
* Any JavaScript object may be used as a key, however strict identity is used
* to evaluate key equality. Two similar looking objects will represent two
* different keys.
*
* Implemented by a hash-array mapped trie.
*/
export module Map {
/**
* True if the provided value is a Map
*/
function isMap(maybeMap: any): boolean;
/**
* Creates a new Map from alternating keys and values
*/
function of(...keyValues: any[]): Map<any, any>;
}
/**
* Creates a new Immutable Map.
*
* Created with the same key value pairs as the provided Iterable.Keyed or
* JavaScript Object or expects an Iterable of [K, V] tuple entries.
*
* var newMap = Map({key: "value"});
* var newMap = Map([["key", "value"]]);
*
* Keep in mind, when using JS objects to construct Immutable Maps, that
* JavaScript Object properties are always strings, even if written in a
* quote-less shorthand, while Immutable Maps accept keys of any type.
*
* ```js
* var obj = { 1: "one" };
* Object.keys(obj); // [ "1" ]
* obj["1"]; // "one"
* obj[1]; // "one"
*
* var map = Map(obj);
* map.get("1"); // "one"
* map.get(1); // undefined
* ```
*
* Property access for JavaScript Objects first converts the key to a string,
* but since Immutable Map keys can be of any type the argument to `get()` is
* not altered.
*/
export function Map<K, V>(): Map<K, V>;
export function Map<K, V>(iter: Iterable.Keyed<K, V>): Map<K, V>;
export function Map<K, V>(iter: Iterable<any, /*[K,V]*/Array<any>>): Map<K, V>;
export function Map<K, V>(array: Array</*[K,V]*/Array<any>>): Map<K, V>;
export function Map<V>(obj: {[key: string]: V}): Map<string, V>;
export function Map<K, V>(iterator: Iterator</*[K,V]*/Array<any>>): Map<K, V>;
export function Map<K, V>(iterable: /*Iterable<[K,V]>*/Object): Map<K, V>;
export interface Map<K, V> extends Collection.Keyed<K, V> {
// Persistent changes
/**
* Returns a new Map also containing the new key, value pair. If an equivalent
* key already exists in this Map, it will be replaced.
*/
set(key: K, value: V): Map<K, V>;
/**
* Returns a new Map which excludes this `key`.
*
* Note: `delete` cannot be safely used in IE8, but is provided to mirror
* the ES6 collection API.
* @alias remove
*/
delete(key: K): Map<K, V>;
remove(key: K): Map<K, V>;
/**
* Returns a new Map containing no keys or values.
*/
clear(): Map<K, V>;
/**
* Returns a new Map having updated the value at this `key` with the return
* value of calling `updater` with the existing value, or `notSetValue` if
* the key was not set. If called with only a single argument, `updater` is
* called with the Map itself.
*
* Equivalent to: `map.set(key, updater(map.get(key, notSetValue)))`.
*/
update(updater: (value: Map<K, V>) => Map<K, V>): Map<K, V>;
update(key: K, updater: (value: V) => V): Map<K, V>;
update(key: K, notSetValue: V, updater: (value: V) => V): Map<K, V>;
/**
* Returns a new Map resulting from merging the provided Iterables
* (or JS objects) into this Map. In other words, this takes each entry of
* each iterable and sets it on this Map.
*
* If any of the values provided to `merge` are not Iterable (would return
* false for `Immutable.Iterable.isIterable`) then they are deeply converted
* via `Immutable.fromJS` before being merged. However, if the value is an
* Iterable but includes non-iterable JS objects or arrays, those nested
* values will be preserved.
*
* var x = Immutable.Map({a: 10, b: 20, c: 30});
* var y = Immutable.Map({b: 40, a: 50, d: 60});
* x.merge(y) // { a: 50, b: 40, c: 30, d: 60 }
* y.merge(x) // { b: 20, a: 10, d: 60, c: 30 }
*
*/
merge(...iterables: Iterable<K, V>[]): Map<K, V>;
merge(...iterables: {[key: string]: V}[]): Map<string, V>;
/**
* Like `merge()`, `mergeWith()` returns a new Map resulting from merging
* the provided Iterables (or JS objects) into this Map, but uses the
* `merger` function for dealing with conflicts.
*
* var x = Immutable.Map({a: 10, b: 20, c: 30});
* var y = Immutable.Map({b: 40, a: 50, d: 60});
* x.mergeWith((prev, next) => prev / next, y) // { a: 0.2, b: 0.5, c: 30, d: 60 }
* y.mergeWith((prev, next) => prev / next, x) // { b: 2, a: 5, d: 60, c: 30 }
*
*/
mergeWith(
merger: (previous?: V, next?: V, key?: K) => V,
...iterables: Iterable<K, V>[]
): Map<K, V>;
mergeWith(
merger: (previous?: V, next?: V, key?: K) => V,
...iterables: {[key: string]: V}[]
): Map<string, V>;
/**
* Like `merge()`, but when two Iterables conflict, it merges them as well,
* recursing deeply through the nested data.
*
* var x = Immutable.fromJS({a: { x: 10, y: 10 }, b: { x: 20, y: 50 } });
* var y = Immutable.fromJS({a: { x: 2 }, b: { y: 5 }, c: { z: 3 } });
* x.mergeDeep(y) // {a: { x: 2, y: 10 }, b: { x: 20, y: 5 }, c: { z: 3 } }
*
*/
mergeDeep(...iterables: Iterable<K, V>[]): Map<K, V>;
mergeDeep(...iterables: {[key: string]: V}[]): Map<string, V>;
/**
* Like `mergeDeep()`, but when two non-Iterables conflict, it uses the
* `merger` function to determine the resulting value.
*
* var x = Immutable.fromJS({a: { x: 10, y: 10 }, b: { x: 20, y: 50 } });
* var y = Immutable.fromJS({a: { x: 2 }, b: { y: 5 }, c: { z: 3 } });
* x.mergeDeepWith((prev, next) => prev / next, y)
* // {a: { x: 5, y: 10 }, b: { x: 20, y: 10 }, c: { z: 3 } }
*
*/
mergeDeepWith(
merger: (previous?: V, next?: V, key?: K) => V,
...iterables: Iterable<K, V>[]
): Map<K, V>;
mergeDeepWith(
merger: (previous?: V, next?: V, key?: K) => V,
...iterables: {[key: string]: V}[]
): Map<string, V>;
// Deep persistent changes
/**
* Returns a new Map having set `value` at this `keyPath`. If any keys in
* `keyPath` do not exist, a new immutable Map will be created at that key.
*/
setIn(keyPath: Array<any>, value: any): Map<K, V>;
setIn(KeyPath: Iterable<any, any>, value: any): Map<K, V>;
/**
* Returns a new Map having removed the value at this `keyPath`. If any keys
* in `keyPath` do not exist, no change will occur.
*
* @alias removeIn
*/
deleteIn(keyPath: Array<any>): Map<K, V>;
deleteIn(keyPath: Iterable<any, any>): Map<K, V>;
removeIn(keyPath: Array<any>): Map<K, V>;
removeIn(keyPath: Iterable<any, any>): Map<K, V>;
/**
* Returns a new Map having applied the `updater` to the entry found at the
* keyPath.
*
* If any keys in `keyPath` do not exist, new Immutable `Map`s will
* be created at those keys. If the `keyPath` does not already contain a
* value, the `updater` function will be called with `notSetValue`, if
* provided, otherwise `undefined`.
*
* var data = Immutable.fromJS({ a: { b: { c: 10 } } });
* data = data.updateIn(['a', 'b', 'c'], val => val * 2);
* // { a: { b: { c: 20 } } }
*
* If the `updater` function returns the same value it was called with, then
* no change will occur. This is still true if `notSetValue` is provided.
*
* var data1 = Immutable.fromJS({ a: { b: { c: 10 } } });
* data2 = data1.updateIn(['x', 'y', 'z'], 100, val => val);
* assert(data2 === data1);
*
*/
updateIn(
keyPath: Array<any>,
updater: (value: any) => any
): Map<K, V>;
updateIn(
keyPath: Array<any>,
notSetValue: any,
updater: (value: any) => any
): Map<K, V>;
updateIn(
keyPath: Iterable<any, any>,
updater: (value: any) => any
): Map<K, V>;
updateIn(
keyPath: Iterable<any, any>,
notSetValue: any,
updater: (value: any) => any
): Map<K, V>;
/**
* A combination of `updateIn` and `merge`, returning a new Map, but
* performing the merge at a point arrived at by following the keyPath.
* In other words, these two lines are equivalent:
*
* x.updateIn(['a', 'b', 'c'], abc => abc.merge(y));
* x.mergeIn(['a', 'b', 'c'], y);
*
*/
mergeIn(
keyPath: Iterable<any, any>,
...iterables: Iterable<K, V>[]
): Map<K, V>;
mergeIn(
keyPath: Array<any>,
...iterables: Iterable<K, V>[]
): Map<K, V>;
mergeIn(
keyPath: Array<any>,
...iterables: {[key: string]: V}[]
): Map<string, V>;
/**
* A combination of `updateIn` and `mergeDeep`, returning a new Map, but
* performing the deep merge at a point arrived at by following the keyPath.
* In other words, these two lines are equivalent:
*
* x.updateIn(['a', 'b', 'c'], abc => abc.mergeDeep(y));
* x.mergeDeepIn(['a', 'b', 'c'], y);
*
*/
mergeDeepIn(
keyPath: Iterable<any, any>,
...iterables: Iterable<K, V>[]
): Map<K, V>;
mergeDeepIn(
keyPath: Array<any>,
...iterables: Iterable<K, V>[]
): Map<K, V>;
mergeDeepIn(
keyPath: Array<any>,
...iterables: {[key: string]: V}[]
): Map<string, V>;
// Transient changes
/**
* Every time you call one of the above functions, a new immutable Map is
* created. If a pure function calls a number of these to produce a final
* return value, then a penalty on performance and memory has been paid by
* creating all of the intermediate immutable Maps.
*
* If you need to apply a series of mutations to produce a new immutable
* Map, `withMutations()` creates a temporary mutable copy of the Map which
* can apply mutations in a highly performant manner. In fact, this is
* exactly how complex mutations like `merge` are done.
*
* As an example, this results in the creation of 2, not 4, new Maps:
*
* var map1 = Immutable.Map();
* var map2 = map1.withMutations(map => {
* map.set('a', 1).set('b', 2).set('c', 3);
* });
* assert(map1.size === 0);
* assert(map2.size === 3);
*
* Note: Not all methods can be used on a mutable collection or within
* `withMutations`! Only `set` and `merge` may be used mutatively.
*
*/
withMutations(mutator: (mutable: Map<K, V>) => any): Map<K, V>;
/**
* Another way to avoid creation of intermediate Immutable maps is to create
* a mutable copy of this collection. Mutable copies *always* return `this`,
* and thus shouldn't be used for equality. Your function should never return
* a mutable copy of a collection, only use it internally to create a new
* collection. If possible, use `withMutations` as it provides an easier to
* use API.
*
* Note: if the collection is already mutable, `asMutable` returns itself.
*
* Note: Not all methods can be used on a mutable collection or within
* `withMutations`! Only `set` and `merge` may be used mutatively.
*/
asMutable(): Map<K, V>;
/**
* The yin to `asMutable`'s yang. Because it applies to mutable collections,
* this operation is *mutable* and returns itself. Once performed, the mutable
* copy has become immutable and can be safely returned from a function.
*/
asImmutable(): Map<K, V>;
}
/**
* A type of Map that has the additional guarantee that the iteration order of
* entries will be the order in which they were set().
*
* The iteration behavior of OrderedMap is the same as native ES6 Map and
* JavaScript Object.
*
* Note that `OrderedMap` are more expensive than non-ordered `Map` and may
* consume more memory. `OrderedMap#set` is amortized O(log32 N), but not
* stable.
*/
export module OrderedMap {
/**
* True if the provided value is an OrderedMap.
*/
function isOrderedMap(maybeOrderedMap: any): boolean;
}
/**
* Creates a new Immutable OrderedMap.
*
* Created with the same key value pairs as the provided Iterable.Keyed or
* JavaScript Object or expects an Iterable of [K, V] tuple entries.
*
* The iteration order of key-value pairs provided to this constructor will
* be preserved in the OrderedMap.
*
* var newOrderedMap = OrderedMap({key: "value"});
* var newOrderedMap = OrderedMap([["key", "value"]]);
*
*/
export function OrderedMap<K, V>(): OrderedMap<K, V>;
export function OrderedMap<K, V>(iter: Iterable.Keyed<K, V>): OrderedMap<K, V>;
export function OrderedMap<K, V>(iter: Iterable<any, /*[K,V]*/Array<any>>): OrderedMap<K, V>;
export function OrderedMap<K, V>(array: Array</*[K,V]*/Array<any>>): OrderedMap<K, V>;
export function OrderedMap<V>(obj: {[key: string]: V}): OrderedMap<string, V>;
export function OrderedMap<K, V>(iterator: Iterator</*[K,V]*/Array<any>>): OrderedMap<K, V>;
export function OrderedMap<K, V>(iterable: /*Iterable<[K,V]>*/Object): OrderedMap<K, V>;
export interface OrderedMap<K, V> extends Map<K, V> {}
/**
* A Collection of unique values with `O(log32 N)` adds and has.
*
* When iterating a Set, the entries will be (value, value) pairs. Iteration
* order of a Set is undefined, however is stable. Multiple iterations of the
* same Set will iterate in the same order.
*
* Set values, like Map keys, may be of any type. Equality is determined using
* `Immutable.is`, enabling Sets to uniquely include other Immutable
* collections, custom value types, and NaN.
*/
export module Set {
/**
* True if the provided value is a Set
*/
function isSet(maybeSet: any): boolean;
/**
* Creates a new Set containing `values`.
*/
function of<T>(...values: T[]): Set<T>;
/**
* `Set.fromKeys()` creates a new immutable Set containing the keys from
* this Iterable or JavaScript Object.
*/
function fromKeys<T>(iter: Iterable<T, any>): Set<T>;
function fromKeys(obj: {[key: string]: any}): Set<string>;
}
/**
* Create a new immutable Set containing the values of the provided
* iterable-like.
*/
export function Set<T>(): Set<T>;
export function Set<T>(iter: Iterable.Set<T>): Set<T>;
export function Set<T>(iter: Iterable.Indexed<T>): Set<T>;
export function Set<K, V>(iter: Iterable.Keyed<K, V>): Set</*[K,V]*/any>;
export function Set<T>(array: Array<T>): Set<T>;
export function Set<T>(iterator: Iterator<T>): Set<T>;
export function Set<T>(iterable: /*Iterable<T>*/Object): Set<T>;
export interface Set<T> extends Collection.Set<T> {
// Persistent changes
/**
* Returns a new Set which also includes this value.
*/
add(value: T): Set<T>;
/**
* Returns a new Set which excludes this value.
*
* Note: `delete` cannot be safely used in IE8
* @alias remove
*/
delete(value: T): Set<T>;
remove(value: T): Set<T>;
/**
* Returns a new Set containing no values.
*/
clear(): Set<T>;
/**
* Returns a Set including any value from `iterables` that does not already
* exist in this Set.
* @alias merge
*/
union(...iterables: Iterable<any, T>[]): Set<T>;
union(...iterables: Array<T>[]): Set<T>;
merge(...iterables: Iterable<any, T>[]): Set<T>;
merge(...iterables: Array<T>[]): Set<T>;
/**
* Returns a Set which has removed any values not also contained
* within `iterables`.
*/
intersect(...iterables: Iterable<any, T>[]): Set<T>;
intersect(...iterables: Array<T>[]): Set<T>;
/**
* Returns a Set excluding any values contained within `iterables`.
*/
subtract(...iterables: Iterable<any, T>[]): Set<T>;
subtract(...iterables: Array<T>[]): Set<T>;
// Transient changes
/**
* Note: Not all methods can be used on a mutable collection or within
* `withMutations`! Only `add` may be used mutatively.
*
* @see `Map#withMutations`
*/
withMutations(mutator: (mutable: Set<T>) => any): Set<T>;
/**
* @see `Map#asMutable`
*/
asMutable(): Set<T>;
/**
* @see `Map#asImmutable`
*/
asImmutable(): Set<T>;
}
/**
* A type of Set that has the additional guarantee that the iteration order of
* values will be the order in which they were `add`ed.
*
* The iteration behavior of OrderedSet is the same as native ES6 Set.
*
* Note that `OrderedSet` are more expensive than non-ordered `Set` and may
* consume more memory. `OrderedSet#add` is amortized O(log32 N), but not
* stable.
*/
export module OrderedSet {
/**
* True if the provided value is an OrderedSet.
*/
function isOrderedSet(maybeOrderedSet: any): boolean;
/**
* Creates a new OrderedSet containing `values`.
*/
function of<T>(...values: T[]): OrderedSet<T>;
/**
* `OrderedSet.fromKeys()` creates a new immutable OrderedSet containing
* the keys from this Iterable or JavaScript Object.
*/
function fromKeys<T>(iter: Iterable<T, any>): OrderedSet<T>;
function fromKeys(obj: {[key: string]: any}): OrderedSet<string>;
}
/**
* Create a new immutable OrderedSet containing the values of the provided
* iterable-like.
*/
export function OrderedSet<T>(): OrderedSet<T>;
export function OrderedSet<T>(iter: Iterable.Set<T>): OrderedSet<T>;
export function OrderedSet<T>(iter: Iterable.Indexed<T>): OrderedSet<T>;
export function OrderedSet<K, V>(iter: Iterable.Keyed<K, V>): OrderedSet</*[K,V]*/any>;
export function OrderedSet<T>(array: Array<T>): OrderedSet<T>;
export function OrderedSet<T>(iterator: Iterator<T>): OrderedSet<T>;
export function OrderedSet<T>(iterable: /*Iterable<T>*/Object): OrderedSet<T>;
export interface OrderedSet<T> extends Set<T> {}
/**
* Stacks are indexed collections which support very efficient O(1) addition
* and removal from the front using `unshift(v)` and `shift()`.
*
* For familiarity, Stack also provides `push(v)`, `pop()`, and `peek()`, but
* be aware that they also operate on the front of the list, unlike List or
* a JavaScript Array.
*
* Note: `reverse()` or any inherent reverse traversal (`reduceRight`,
* `lastIndexOf`, etc.) is not efficient with a Stack.
*
* Stack is implemented with a Single-Linked List.
*/
export module Stack {
/**
* True if the provided value is a Stack
*/
function isStack(maybeStack: any): boolean;
/**
* Creates a new Stack containing `values`.
*/
function of<T>(...values: T[]): Stack<T>;
}
/**
* Create a new immutable Stack containing the values of the provided
* iterable-like.
*
* The iteration order of the provided iterable is preserved in the
* resulting `Stack`.
*/
export function Stack<T>(): Stack<T>;
export function Stack<T>(iter: Iterable.Indexed<T>): Stack<T>;
export function Stack<T>(iter: Iterable.Set<T>): Stack<T>;
export function Stack<K, V>(iter: Iterable.Keyed<K, V>): Stack</*[K,V]*/any>;
export function Stack<T>(array: Array<T>): Stack<T>;
export function Stack<T>(iterator: Iterator<T>): Stack<T>;
export function Stack<T>(iterable: /*Iterable<T>*/Object): Stack<T>;
export interface Stack<T> extends Collection.Indexed<T> {
// Reading values
/**
* Alias for `Stack.first()`.
*/
peek(): T;
// Persistent changes
/**
* Returns a new Stack with 0 size and no values.
*/
clear(): Stack<T>;
/**
* Returns a new Stack with the provided `values` prepended, shifting other
* values ahead to higher indices.
*
* This is very efficient for Stack.
*/
unshift(...values: T[]): Stack<T>;
/**
* Like `Stack#unshift`, but accepts a iterable rather than varargs.
*/
unshiftAll(iter: Iterable<any, T>): Stack<T>;
unshiftAll(iter: Array<T>): Stack<T>;
/**
* Returns a new Stack with a size ones less than this Stack, excluding
* the first item in this Stack, shifting all other values to a lower index.
*
* Note: this differs from `Array#shift` because it returns a new
* Stack rather than the removed value. Use `first()` or `peek()` to get the
* first value in this Stack.
*/
shift(): Stack<T>;
/**
* Alias for `Stack#unshift` and is not equivalent to `List#push`.
*/
push(...values: T[]): Stack<T>;
/**
* Alias for `Stack#unshiftAll`.
*/
pushAll(iter: Iterable<any, T>): Stack<T>;
pushAll(iter: Array<T>): Stack<T>;
/**
* Alias for `Stack#shift` and is not equivalent to `List#pop`.
*/
pop(): Stack<T>;
// Transient changes
/**
* Note: Not all methods can be used on a mutable collection or within
* `withMutations`! Only `set`, `push`, and `pop` may be used mutatively.
*
* @see `Map#withMutations`
*/
withMutations(mutator: (mutable: Stack<T>) => any): Stack<T>;
/**
* @see `Map#asMutable`
*/
asMutable(): Stack<T>;
/**
* @see `Map#asImmutable`
*/
asImmutable(): Stack<T>;
}
/**
* Returns a Seq.Indexed of numbers from `start` (inclusive) to `end`
* (exclusive), by `step`, where `start` defaults to 0, `step` to 1, and `end` to
* infinity. When `start` is equal to `end`, returns empty range.
*
* Range() // [0,1,2,3,...]
* Range(10) // [10,11,12,13,...]
* Range(10,15) // [10,11,12,13,14]
* Range(10,30,5) // [10,15,20,25]
* Range(30,10,5) // [30,25,20,15]
* Range(30,30,5) // []
*
*/
export function Range(start?: number, end?: number, step?: number): Seq.Indexed<number>;
/**
* Returns a Seq.Indexed of `value` repeated `times` times. When `times` is
* not defined, returns an infinite `Seq` of `value`.
*
* Repeat('foo') // ['foo','foo','foo',...]
* Repeat('bar',4) // ['bar','bar','bar','bar']
*
*/
export function Repeat<T>(value: T, times?: number): Seq.Indexed<T>;
/**
* Creates a new Class which produces Record instances. A record is similar to
* a JS object, but enforce a specific set of allowed string keys, and have
* default values.
*
* var ABRecord = Record({a:1, b:2})
* var myRecord = new ABRecord({b:3})
*
* Records always have a value for the keys they define. `remove`ing a key
* from a record simply resets it to the default value for that key.
*
* myRecord.size // 2
* myRecord.get('a') // 1
* myRecord.get('b') // 3
* myRecordWithoutB = myRecord.remove('b')
* myRecordWithoutB.get('b') // 2
* myRecordWithoutB.size // 2
*
* Values provided to the constructor not found in the Record type will
* be ignored. For example, in this case, ABRecord is provided a key "x" even
* though only "a" and "b" have been defined. The value for "x" will be
* ignored for this record.
*
* var myRecord = new ABRecord({b:3, x:10})
* myRecord.get('x') // undefined
*
* Because Records have a known set of string keys, property get access works
* as expected, however property sets will throw an Error.
*
* Note: IE8 does not support property access. Only use `get()` when
* supporting IE8.
*
* myRecord.b // 3
* myRecord.b = 5 // throws Error
*
* Record Classes can be extended as well, allowing for custom methods on your
* Record. This is not a common pattern in functional environments, but is in
* many JS programs.
*
* Note: TypeScript does not support this type of subclassing.
*
* class ABRecord extends Record({a:1,b:2}) {
* getAB() {
* return this.a + this.b;
* }
* }
*
* var myRecord = new ABRecord({b: 3})
* myRecord.getAB() // 4
*
*/
export module Record {
export interface Class {
new (): Map<string, any>;
new (values: {[key: string]: any}): Map<string, any>;
new (values: Iterable<string, any>): Map<string, any>; // deprecated
(): Map<string, any>;
(values: {[key: string]: any}): Map<string, any>;
(values: Iterable<string, any>): Map<string, any>; // deprecated
}
}
export function Record(
defaultValues: {[key: string]: any}, name?: string
): Record.Class;
/**
* Represents a sequence of values, but may not be backed by a concrete data
* structure.
*
* **Seq is immutable** — Once a Seq is created, it cannot be
* changed, appended to, rearranged or otherwise modified. Instead, any
* mutative method called on a `Seq` will return a new `Seq`.
*
* **Seq is lazy** — Seq does as little work as necessary to respond to any
* method call. Values are often created during iteration, including implicit
* iteration when reducing or converting to a concrete data structure such as
* a `List` or JavaScript `Array`.
*
* For example, the following performs no work, because the resulting
* Seq's values are never iterated:
*
* var oddSquares = Immutable.Seq.of(1,2,3,4,5,6,7,8)
* .filter(x => x % 2).map(x => x * x);
*
* Once the Seq is used, it performs only the work necessary. In this
* example, no intermediate data structures are ever created, filter is only
* called three times, and map is only called once:
*
* console.log(oddSquares.get(1)); // 9
*
* Seq allows for the efficient chaining of operations,
* allowing for the expression of logic that can otherwise be very tedious:
*
* Immutable.Seq({a:1, b:1, c:1})
* .flip().map(key => key.toUpperCase()).flip().toObject();
* // Map { A: 1, B: 1, C: 1 }
*
* As well as expressing logic that would otherwise be memory or time limited:
*
* Immutable.Range(1, Infinity)
* .skip(1000)
* .map(n => -n)
* .filter(n => n % 2 === 0)
* .take(2)
* .reduce((r, n) => r * n, 1);
* // 1006008
*
* Seq is often used to provide a rich collection API to JavaScript Object.
*
* Immutable.Seq({ x: 0, y: 1, z: 2 }).map(v => v * 2).toObject();
* // { x: 0, y: 2, z: 4 }
*/
export module Seq {
/**
* True if `maybeSeq` is a Seq, it is not backed by a concrete
* structure such as Map, List, or Set.
*/
function isSeq(maybeSeq: any): boolean;
/**
* Returns a Seq of the values provided. Alias for `Seq.Indexed.of()`.
*/
function of<T>(...values: T[]): Seq.Indexed<T>;
/**
* `Seq` which represents key-value pairs.
*/
export module Keyed {}
/**
* Always returns a Seq.Keyed, if input is not keyed, expects an
* iterable of [K, V] tuples.
*/
export function Keyed<K, V>(): Seq.Keyed<K, V>;
export function Keyed<K, V>(seq: Iterable.Keyed<K, V>): Seq.Keyed<K, V>;
export function Keyed<K, V>(seq: Iterable<any, /*[K,V]*/any>): Seq.Keyed<K, V>;
export function Keyed<K, V>(array: Array</*[K,V]*/any>): Seq.Keyed<K, V>;
export function Keyed<V>(obj: {[key: string]: V}): Seq.Keyed<string, V>;
export function Keyed<K, V>(iterator: Iterator</*[K,V]*/any>): Seq.Keyed<K, V>;
export function Keyed<K, V>(iterable: /*Iterable<[K,V]>*/Object): Seq.Keyed<K, V>;
export interface Keyed<K, V> extends Seq<K, V>, Iterable.Keyed<K, V> {
/**
* Returns itself
*/
toSeq(): /*this*/Seq.Keyed<K, V>
}
/**
* `Seq` which represents an ordered indexed list of values.
*/
module Indexed {
/**
* Provides an Seq.Indexed of the values provided.
*/
function of<T>(...values: T[]): Seq.Indexed<T>;
}
/**
* Always returns Seq.Indexed, discarding associated keys and
* supplying incrementing indices.
*/
export function Indexed<T>(): Seq.Indexed<T>;
export function Indexed<T>(seq: Iterable.Indexed<T>): Seq.Indexed<T>;
export function Indexed<T>(seq: Iterable.Set<T>): Seq.Indexed<T>;
export function Indexed<K, V>(seq: Iterable.Keyed<K, V>): Seq.Indexed</*[K,V]*/any>;
export function Indexed<T>(array: Array<T>): Seq.Indexed<T>;
export function Indexed<T>(iterator: Iterator<T>): Seq.Indexed<T>;
export function Indexed<T>(iterable: /*Iterable<T>*/Object): Seq.Indexed<T>;
export interface Indexed<T> extends Seq<number, T>, Iterable.Indexed<T> {
/**
* Returns itself
*/
toSeq(): /*this*/Seq.Indexed<T>
}
/**
* `Seq` which represents a set of values.
*
* Because `Seq` are often lazy, `Seq.Set` does not provide the same guarantee
* of value uniqueness as the concrete `Set`.
*/
export module Set {
/**
* Returns a Seq.Set of the provided values
*/
function of<T>(...values: T[]): Seq.Set<T>;
}
/**
* Always returns a Seq.Set, discarding associated indices or keys.
*/
export function Set<T>(): Seq.Set<T>;
export function Set<T>(seq: Iterable.Set<T>): Seq.Set<T>;
export function Set<T>(seq: Iterable.Indexed<T>): Seq.Set<T>;
export function Set<K, V>(seq: Iterable.Keyed<K, V>): Seq.Set</*[K,V]*/any>;
export function Set<T>(array: Array<T>): Seq.Set<T>;
export function Set<T>(iterator: Iterator<T>): Seq.Set<T>;
export function Set<T>(iterable: /*Iterable<T>*/Object): Seq.Set<T>;
export interface Set<T> extends Seq<T, T>, Iterable.Set<T> {
/**
* Returns itself
*/
toSeq(): /*this*/Seq.Set<T>
}
}
/**
* Creates a Seq.
*
* Returns a particular kind of `Seq` based on the input.
*
* * If a `Seq`, that same `Seq`.
* * If an `Iterable`, a `Seq` of the same kind (Keyed, Indexed, or Set).
* * If an Array-like, an `Seq.Indexed`.
* * If an Object with an Iterator, an `Seq.Indexed`.
* * If an Iterator, an `Seq.Indexed`.
* * If an Object, a `Seq.Keyed`.
*
*/
export function Seq<K, V>(): Seq<K, V>;
export function Seq<K, V>(seq: Seq<K, V>): Seq<K, V>;
export function Seq<K, V>(iterable: Iterable<K, V>): Seq<K, V>;
export function Seq<T>(array: Array<T>): Seq.Indexed<T>;
export function Seq<V>(obj: {[key: string]: V}): Seq.Keyed<string, V>;
export function Seq<T>(iterator: Iterator<T>): Seq.Indexed<T>;
export function Seq<T>(iterable: /*ES6Iterable<T>*/Object): Seq.Indexed<T>;
export interface Seq<K, V> extends Iterable<K, V> {
/**
* Some Seqs can describe their size lazily. When this is the case,
* size will be an integer. Otherwise it will be undefined.
*
* For example, Seqs returned from `map()` or `reverse()`
* preserve the size of the original `Seq` while `filter()` does not.
*
* Note: `Range`, `Repeat` and `Seq`s made from `Array`s and `Object`s will
* always have a size.
*/
size: number/*?*/;
// Force evaluation
/**
* Because Sequences are lazy and designed to be chained together, they do
* not cache their results. For example, this map function is called a total
* of 6 times, as each `join` iterates the Seq of three values.
*
* var squares = Seq.of(1,2,3).map(x => x * x);
* squares.join() + squares.join();
*
* If you know a `Seq` will be used multiple times, it may be more
* efficient to first cache it in memory. Here, the map function is called
* only 3 times.
*
* var squares = Seq.of(1,2,3).map(x => x * x).cacheResult();
* squares.join() + squares.join();
*
* Use this method judiciously, as it must fully evaluate a Seq which can be
* a burden on memory and possibly performance.
*
* Note: after calling `cacheResult`, a Seq will always have a `size`.
*/
cacheResult(): /*this*/Seq<K, V>;
}
/**
* The `Iterable` is a set of (key, value) entries which can be iterated, and
* is the base class for all collections in `immutable`, allowing them to
* make use of all the Iterable methods (such as `map` and `filter`).
*
* Note: An iterable is always iterated in the same order, however that order
* may not always be well defined, as is the case for the `Map` and `Set`.
*/
export module Iterable {
/**
* True if `maybeIterable` is an Iterable, or any of its subclasses.
*/
function isIterable(maybeIterable: any): boolean;
/**
* True if `maybeKeyed` is an Iterable.Keyed, or any of its subclasses.
*/
function isKeyed(maybeKeyed: any): boolean;
/**
* True if `maybeIndexed` is a Iterable.Indexed, or any of its subclasses.
*/
function isIndexed(maybeIndexed: any): boolean;
/**
* True if `maybeAssociative` is either a keyed or indexed Iterable.
*/
function isAssociative(maybeAssociative: any): boolean;
/**
* True if `maybeOrdered` is an Iterable where iteration order is well
* defined. True for Iterable.Indexed as well as OrderedMap and OrderedSet.
*/
function isOrdered(maybeOrdered: any): boolean;
/**
* Keyed Iterables have discrete keys tied to each value.
*
* When iterating `Iterable.Keyed`, each iteration will yield a `[K, V]`
* tuple, in other words, `Iterable#entries` is the default iterator for
* Keyed Iterables.
*/
export module Keyed {}
/**
* Creates an Iterable.Keyed
*
* Similar to `Iterable()`, however it expects iterable-likes of [K, V]
* tuples if not constructed from a Iterable.Keyed or JS Object.
*/
export function Keyed<K, V>(iter: Iterable.Keyed<K, V>): Iterable.Keyed<K, V>;
export function Keyed<K, V>(iter: Iterable<any, /*[K,V]*/any>): Iterable.Keyed<K, V>;
export function Keyed<K, V>(array: Array</*[K,V]*/any>): Iterable.Keyed<K, V>;
export function Keyed<V>(obj: {[key: string]: V}): Iterable.Keyed<string, V>;
export function Keyed<K, V>(iterator: Iterator</*[K,V]*/any>): Iterable.Keyed<K, V>;
export function Keyed<K, V>(iterable: /*Iterable<[K,V]>*/Object): Iterable.Keyed<K, V>;
export interface Keyed<K, V> extends Iterable<K, V> {
/**
* Returns Seq.Keyed.
* @override
*/
toSeq(): Seq.Keyed<K, V>;
// Sequence functions
/**
* Returns a new Iterable.Keyed of the same type where the keys and values
* have been flipped.
*
* Seq({ a: 'z', b: 'y' }).flip() // { z: 'a', y: 'b' }
*
*/
flip(): /*this*/Iterable.Keyed<V, K>;
/**
* Returns a new Iterable.Keyed of the same type with keys passed through
* a `mapper` function.
*
* Seq({ a: 1, b: 2 })
* .mapKeys(x => x.toUpperCase())
* // Seq { A: 1, B: 2 }
*
*/
mapKeys<M>(
mapper: (key?: K, value?: V, iter?: /*this*/Iterable.Keyed<K, V>) => M,
context?: any
): /*this*/Iterable.Keyed<M, V>;
/**
* Returns a new Iterable.Keyed of the same type with entries
* ([key, value] tuples) passed through a `mapper` function.
*
* Seq({ a: 1, b: 2 })
* .mapEntries(([k, v]) => [k.toUpperCase(), v * 2])
* // Seq { A: 2, B: 4 }
*
*/
mapEntries<KM, VM>(
mapper: (
entry?: /*(K, V)*/Array<any>,
index?: number,
iter?: /*this*/Iterable.Keyed<K, V>
) => /*[KM, VM]*/Array<any>,
context?: any
): /*this*/Iterable.Keyed<KM, VM>;
}
/**
* Indexed Iterables have incrementing numeric keys. They exhibit
* slightly different behavior than `Iterable.Keyed` for some methods in order
* to better mirror the behavior of JavaScript's `Array`, and add methods
* which do not make sense on non-indexed Iterables such as `indexOf`.
*
* Unlike JavaScript arrays, `Iterable.Indexed`s are always dense. "Unset"
* indices and `undefined` indices are indistinguishable, and all indices from
* 0 to `size` are visited when iterated.
*
* All Iterable.Indexed methods return re-indexed Iterables. In other words,
* indices always start at 0 and increment until size. If you wish to
* preserve indices, using them as keys, convert to a Iterable.Keyed by
* calling `toKeyedSeq`.
*/
export module Indexed