cytoscape
Version:
Graph theory (a.k.a. network) library for analysis and visualisation
159 lines (127 loc) • 3.84 kB
JavaScript
/* global Float32Array */
/*! Bezier curve function generator. Copyright Gaetan Renaudeau. MIT License: http://en.wikipedia.org/wiki/MIT_License */
function generateCubicBezier(mX1, mY1, mX2, mY2) {
let NEWTON_ITERATIONS = 4,
NEWTON_MIN_SLOPE = 0.001,
SUBDIVISION_PRECISION = 0.0000001,
SUBDIVISION_MAX_ITERATIONS = 10,
kSplineTableSize = 11,
kSampleStepSize = 1.0 / (kSplineTableSize - 1.0),
float32ArraySupported = typeof Float32Array !== 'undefined';
/* Must contain four arguments. */
if (arguments.length !== 4) {
return false;
}
/* Arguments must be numbers. */
for (let i = 0; i < 4; ++i) {
if (typeof arguments[i] !== "number" || isNaN(arguments[i]) || !isFinite(arguments[i])) {
return false;
}
}
/* X values must be in the [0, 1] range. */
mX1 = Math.min(mX1, 1);
mX2 = Math.min(mX2, 1);
mX1 = Math.max(mX1, 0);
mX2 = Math.max(mX2, 0);
let mSampleValues = float32ArraySupported ? new Float32Array(kSplineTableSize) : new Array(kSplineTableSize);
function A(aA1, aA2) {
return 1.0 - 3.0 * aA2 + 3.0 * aA1;
}
function B(aA1, aA2) {
return 3.0 * aA2 - 6.0 * aA1;
}
function C(aA1) {
return 3.0 * aA1;
}
function calcBezier(aT, aA1, aA2) {
return ((A(aA1, aA2) * aT + B(aA1, aA2)) * aT + C(aA1)) * aT;
}
function getSlope(aT, aA1, aA2) {
return 3.0 * A(aA1, aA2) * aT * aT + 2.0 * B(aA1, aA2) * aT + C(aA1);
}
function newtonRaphsonIterate(aX, aGuessT) {
for (let i = 0; i < NEWTON_ITERATIONS; ++i) {
let currentSlope = getSlope(aGuessT, mX1, mX2);
if (currentSlope === 0.0) {
return aGuessT;
}
let currentX = calcBezier(aGuessT, mX1, mX2) - aX;
aGuessT -= currentX / currentSlope;
}
return aGuessT;
}
function calcSampleValues() {
for (let i = 0; i < kSplineTableSize; ++i) {
mSampleValues[i] = calcBezier(i * kSampleStepSize, mX1, mX2);
}
}
function binarySubdivide(aX, aA, aB) {
let currentX, currentT, i = 0;
do {
currentT = aA + (aB - aA) / 2.0;
currentX = calcBezier(currentT, mX1, mX2) - aX;
if (currentX > 0.0) {
aB = currentT;
} else {
aA = currentT;
}
} while (Math.abs(currentX) > SUBDIVISION_PRECISION && ++i < SUBDIVISION_MAX_ITERATIONS);
return currentT;
}
function getTForX(aX) {
let intervalStart = 0.0,
currentSample = 1,
lastSample = kSplineTableSize - 1;
for (; currentSample !== lastSample && mSampleValues[currentSample] <= aX; ++currentSample) {
intervalStart += kSampleStepSize;
}
--currentSample;
let dist = (aX - mSampleValues[currentSample]) / (mSampleValues[currentSample + 1] - mSampleValues[currentSample]),
guessForT = intervalStart + dist * kSampleStepSize,
initialSlope = getSlope(guessForT, mX1, mX2);
if (initialSlope >= NEWTON_MIN_SLOPE) {
return newtonRaphsonIterate(aX, guessForT);
} else if (initialSlope === 0.0) {
return guessForT;
} else {
return binarySubdivide(aX, intervalStart, intervalStart + kSampleStepSize);
}
}
let _precomputed = false;
function precompute() {
_precomputed = true;
if (mX1 !== mY1 || mX2 !== mY2) {
calcSampleValues();
}
}
let f = function(aX) {
if (!_precomputed) {
precompute();
}
if (mX1 === mY1 && mX2 === mY2) {
return aX;
}
if (aX === 0) {
return 0;
}
if (aX === 1) {
return 1;
}
return calcBezier(getTForX(aX), mY1, mY2);
};
f.getControlPoints = function() {
return [{
x: mX1,
y: mY1
}, {
x: mX2,
y: mY2
}];
};
let str = "generateBezier(" + [mX1, mY1, mX2, mY2] + ")";
f.toString = function() {
return str;
};
return f;
}
export default generateCubicBezier;