UNPKG

cui-llama.rn

Version:
449 lines 15.1 kB
import type { TurboModule } from 'react-native'; export type NativeEmbeddingParams = { embd_normalize?: number; }; export type NativeContextParams = { model: string; /** * Chat template to override the default one from the model. */ chat_template?: string; is_model_asset?: boolean; use_progress_callback?: boolean; n_ctx?: number; n_batch?: number; n_ubatch?: number; n_threads?: number; /** * Number of layers to store in VRAM (Currently only for iOS) */ n_gpu_layers?: number; /** * Skip GPU devices (iOS only) */ no_gpu_devices?: boolean; /** * Enable flash attention, only recommended in GPU device (Experimental in llama.cpp) */ flash_attn?: boolean; /** * KV cache data type for the K (Experimental in llama.cpp) */ cache_type_k?: string; /** * KV cache data type for the V (Experimental in llama.cpp) */ cache_type_v?: string; use_mlock?: boolean; use_mmap?: boolean; vocab_only?: boolean; /** * Single LoRA adapter path */ lora?: string; /** * Single LoRA adapter scale */ lora_scaled?: number; /** * LoRA adapter list */ lora_list?: Array<{ path: string; scaled?: number; }>; rope_freq_base?: number; rope_freq_scale?: number; pooling_type?: number; /** * Enable context shifting to handle prompts larger than context size */ ctx_shift?: boolean; embedding?: boolean; embd_normalize?: number; }; export type NativeCompletionParams = { prompt: string; n_threads?: number; /** * Enable Jinja. Default: true if supported by the model */ jinja?: boolean; /** * JSON schema for convert to grammar for structured JSON output. * It will be override by grammar if both are set. */ json_schema?: string; /** * Set grammar for grammar-based sampling. Default: no grammar */ grammar?: string; /** * Lazy grammar sampling, trigger by grammar_triggers. Default: false */ grammar_lazy?: boolean; /** * Enable thinking if jinja is enabled. Default: true */ enable_thinking?: boolean; /** * Force thinking to be open. Default: false */ thinking_forced_open?: boolean; /** * Lazy grammar triggers. Default: [] */ grammar_triggers?: Array<{ type: number; value: string; token: number; }>; preserved_tokens?: Array<string>; chat_format?: number; reasoning_format?: string; /** * Path to an image file to process before generating text. * When provided, the image will be processed and added to the context. * Requires multimodal support to be enabled via initMultimodal. */ media_paths?: Array<string>; /** * Specify a JSON array of stopping strings. * These words will not be included in the completion, so make sure to add them to the prompt for the next iteration. Default: `[]` */ stop?: Array<string>; /** * Set the maximum number of tokens to predict when generating text. * **Note:** May exceed the set limit slightly if the last token is a partial multibyte character. * When 0,no tokens will be generated but the prompt is evaluated into the cache. Default: `-1`, where `-1` is infinity. */ n_predict?: number; /** * If greater than 0, the response also contains the probabilities of top N tokens for each generated token given the sampling settings. * Note that for temperature < 0 the tokens are sampled greedily but token probabilities are still being calculated via a simple softmax of the logits without considering any other sampler settings. * Default: `0` */ n_probs?: number; /** * Limit the next token selection to the K most probable tokens. Default: `40` */ top_k?: number; /** * Limit the next token selection to a subset of tokens with a cumulative probability above a threshold P. Default: `0.95` */ top_p?: number; /** * The minimum probability for a token to be considered, relative to the probability of the most likely token. Default: `0.05` */ min_p?: number; /** * Set the chance for token removal via XTC sampler. Default: `0.0`, which is disabled. */ xtc_probability?: number; /** * Set a minimum probability threshold for tokens to be removed via XTC sampler. Default: `0.1` (> `0.5` disables XTC) */ xtc_threshold?: number; /** * Enable locally typical sampling with parameter p. Default: `1.0`, which is disabled. */ typical_p?: number; /** * Adjust the randomness of the generated text. Default: `0.8` */ temperature?: number; /** * Last n tokens to consider for penalizing repetition. Default: `64`, where `0` is disabled and `-1` is ctx-size. */ penalty_last_n?: number; /** * Control the repetition of token sequences in the generated text. Default: `1.0` */ penalty_repeat?: number; /** * Repeat alpha frequency penalty. Default: `0.0`, which is disabled. */ penalty_freq?: number; /** * Repeat alpha presence penalty. Default: `0.0`, which is disabled. */ penalty_present?: number; /** * Enable Mirostat sampling, controlling perplexity during text generation. Default: `0`, where `0` is disabled, `1` is Mirostat, and `2` is Mirostat 2.0. */ mirostat?: number; /** * Set the Mirostat target entropy, parameter tau. Default: `5.0` */ mirostat_tau?: number; /** * Set the Mirostat learning rate, parameter eta. Default: `0.1` */ mirostat_eta?: number; /** * Set the DRY (Don't Repeat Yourself) repetition penalty multiplier. Default: `0.0`, which is disabled. */ dry_multiplier?: number; /** * Set the DRY repetition penalty base value. Default: `1.75` */ dry_base?: number; /** * Tokens that extend repetition beyond this receive exponentially increasing penalty: multiplier * base ^ (length of repeating sequence before token - allowed length). Default: `2` */ dry_allowed_length?: number; /** * How many tokens to scan for repetitions. Default: `-1`, where `0` is disabled and `-1` is context size. */ dry_penalty_last_n?: number; /** * Specify an array of sequence breakers for DRY sampling. Only a JSON array of strings is accepted. Default: `['\n', ':', '"', '*']` */ dry_sequence_breakers?: Array<string>; /** * Top n sigma sampling as described in academic paper "Top-nσ: Not All Logits Are You Need" https://arxiv.org/pdf/2411.07641. Default: `-1.0` (Disabled) */ top_n_sigma?: number; /** * Ignore end of stream token and continue generating. Default: `false` */ ignore_eos?: boolean; /** * Modify the likelihood of a token appearing in the generated text completion. * For example, use `"logit_bias": [[15043,1.0]]` to increase the likelihood of the token 'Hello', or `"logit_bias": [[15043,-1.0]]` to decrease its likelihood. * Setting the value to false, `"logit_bias": [[15043,false]]` ensures that the token `Hello` is never produced. The tokens can also be represented as strings, * e.g.`[["Hello, World!",-0.5]]` will reduce the likelihood of all the individual tokens that represent the string `Hello, World!`, just like the `presence_penalty` does. * Default: `[]` */ logit_bias?: Array<Array<number>>; /** * Set the random number generator (RNG) seed. Default: `-1`, which is a random seed. */ seed?: number; /** * Guide tokens for the completion. * Help prevent hallucinations by forcing the TTS to use the correct words. * Default: `[]` */ guide_tokens?: Array<number>; emit_partial_completion: boolean; }; export type NativeCompletionTokenProbItem = { tok_str: string; prob: number; }; export type NativeCompletionTokenProb = { content: string; probs: Array<NativeCompletionTokenProbItem>; }; export type NativeCompletionResultTimings = { prompt_n: number; prompt_ms: number; prompt_per_token_ms: number; prompt_per_second: number; predicted_n: number; predicted_ms: number; predicted_per_token_ms: number; predicted_per_second: number; }; export type NativeCompletionResult = { /** * Original text (Ignored reasoning_content / tool_calls) */ text: string; /** * Reasoning content (parsed for reasoning model) */ reasoning_content: string; /** * Tool calls */ tool_calls: Array<{ type: 'function'; function: { name: string; arguments: string; }; id?: string; }>; /** * Content text (Filtered text by reasoning_content / tool_calls) */ content: string; tokens_predicted: number; tokens_evaluated: number; truncated: boolean; stopped_eos: boolean; stopped_word: string; stopped_limit: number; stopping_word: string; tokens_cached: number; timings: NativeCompletionResultTimings; completion_probabilities?: Array<NativeCompletionTokenProb>; audio_tokens?: Array<number>; }; export type NativeTokenizeResult = { tokens: Array<number>; /** * Whether the tokenization contains images */ has_images: boolean; /** * Bitmap hashes of the images */ bitmap_hashes: Array<number>; /** * Chunk positions of the text and images */ chunk_pos: Array<number>; /** * Chunk positions of the images */ chunk_pos_images: Array<number>; }; export type NativeEmbeddingResult = { embedding: Array<number>; }; export type NativeLlamaContext = { contextId: number; model: { desc: string; size: number; nEmbd: number; nParams: number; chatTemplates: { llamaChat: boolean; minja: { default: boolean; defaultCaps: { tools: boolean; toolCalls: boolean; toolResponses: boolean; systemRole: boolean; parallelToolCalls: boolean; toolCallId: boolean; }; toolUse: boolean; toolUseCaps: { tools: boolean; toolCalls: boolean; toolResponses: boolean; systemRole: boolean; parallelToolCalls: boolean; toolCallId: boolean; }; }; }; metadata: Object; isChatTemplateSupported: boolean; }; /** * Loaded library name for Android */ androidLib?: string; gpu: boolean; reasonNoGPU: string; }; export type NativeSessionLoadResult = { tokens_loaded: number; prompt: string; }; export type NativeLlamaMessagePart = { type: 'text'; text: string; }; export type NativeLlamaChatMessage = { role: string; content: string | Array<NativeLlamaMessagePart>; }; export type NativeCPUFeatures = { armv8: boolean; i8mm: boolean; dotprod: boolean; }; export type FormattedChatResult = { type: 'jinja' | 'llama-chat'; prompt: string; has_media: boolean; media_paths?: Array<string>; }; export type JinjaFormattedChatResult = FormattedChatResult & { chat_format?: number; grammar?: string; grammar_lazy?: boolean; grammar_triggers?: Array<{ type: number; value: string; token: number; }>; thinking_forced_open?: boolean; preserved_tokens?: Array<string>; additional_stops?: Array<string>; }; export type NativeImageProcessingResult = { success: boolean; prompt: string; error?: string; }; export type NativeRerankParams = { normalize?: number; }; export type NativeRerankResult = { score: number; index: number; }; export interface Spec extends TurboModule { toggleNativeLog(enabled: boolean): Promise<void>; setContextLimit(limit: number): Promise<void>; modelInfo(path: string, skip?: string[]): Promise<Object>; initContext(contextId: number, params: NativeContextParams): Promise<NativeLlamaContext>; getFormattedChat(contextId: number, messages: string, chatTemplate?: string, params?: { jinja?: boolean; json_schema?: string; tools?: string; parallel_tool_calls?: string; tool_choice?: string; enable_thinking?: boolean; }): Promise<JinjaFormattedChatResult | string>; loadSession(contextId: number, filepath: string): Promise<NativeSessionLoadResult>; saveSession(contextId: number, filepath: string, size: number): Promise<number>; completion(contextId: number, params: NativeCompletionParams): Promise<NativeCompletionResult>; stopCompletion(contextId: number): Promise<void>; tokenizeAsync(contextId: number, text: string, imagePaths?: Array<string>): Promise<NativeTokenizeResult>; tokenizeSync(contextId: number, text: string, imagePaths?: Array<string>): NativeTokenizeResult; getCpuFeatures(): Promise<NativeCPUFeatures>; detokenize(contextId: number, tokens: number[]): Promise<string>; embedding(contextId: number, text: string, params: NativeEmbeddingParams): Promise<NativeEmbeddingResult>; rerank(contextId: number, query: string, documents: Array<string>, params?: NativeRerankParams): Promise<Array<NativeRerankResult>>; bench(contextId: number, pp: number, tg: number, pl: number, nr: number): Promise<string>; applyLoraAdapters(contextId: number, loraAdapters: Array<{ path: string; scaled?: number; }>): Promise<void>; removeLoraAdapters(contextId: number): Promise<void>; getLoadedLoraAdapters(contextId: number): Promise<Array<{ path: string; scaled?: number; }>>; initMultimodal(contextId: number, params: { path: string; use_gpu: boolean; }): Promise<boolean>; isMultimodalEnabled(contextId: number): Promise<boolean>; getMultimodalSupport(contextId: number): Promise<{ vision: boolean; audio: boolean; }>; releaseMultimodal(contextId: number): Promise<void>; initVocoder(contextId: number, vocoderModelPath: string): Promise<boolean>; isVocoderEnabled(contextId: number): Promise<boolean>; getFormattedAudioCompletion(contextId: number, speakerJsonStr: string, textToSpeak: string): Promise<string>; getAudioCompletionGuideTokens(contextId: number, textToSpeak: string): Promise<Array<number>>; decodeAudioTokens(contextId: number, tokens: number[]): Promise<Array<number>>; releaseVocoder(contextId: number): Promise<void>; releaseContext(contextId: number): Promise<void>; releaseAllContexts(): Promise<void>; } declare const _default: Spec; export default _default; //# sourceMappingURL=NativeRNLlama.d.ts.map