UNPKG

cui-llama.rn

Version:
546 lines (417 loc) 17.1 kB
# cui-llama.rn This is a fork of [llama.rn](https://github.com/mybigday/llama.rn) meant for [ChatterUI](https://github.com/Vali-98/ChatterUI) This fork exists to update llama.cpp on a more frequent basis, plus adding useful features to ChatterUI. The following features have been added for Android: - Added stopping prompt processing between batches, vital for mobile devices with very slow prompt processing - `vocab_only` mode: utilize the llama.cpp tokenizer - tokenizeSync: non-blocking, synchronous tokenizer function - Context Shift taken from [kobold.cpp](https://github.com/LostRuins/koboldcpp) - Retrieving CPU Features to check for i8mm and dotprod flags Original repo README.md below. # llama.rn [![Actions Status](https://github.com/mybigday/llama.rn/workflows/CI/badge.svg)](https://github.com/mybigday/llama.rn/actions) [![License: MIT](https://img.shields.io/badge/license-MIT-blue.svg)](https://opensource.org/licenses/MIT) [![npm](https://img.shields.io/npm/v/llama.rn.svg)](https://www.npmjs.com/package/llama.rn/) React Native binding of [llama.cpp](https://github.com/ggerganov/llama.cpp). [llama.cpp](https://github.com/ggerganov/llama.cpp): Inference of [LLaMA](https://arxiv.org/abs/2302.13971) model in pure C/C++ ## Installation ```sh npm install llama.rn ``` #### iOS Please re-run `npx pod-install` again. By default, `llama.rn` will use pre-built `rnllama.xcframework` for iOS. If you want to build from source, please set `RNLLAMA_BUILD_FROM_SOURCE` to `1` in your Podfile. #### Android Add proguard rule if it's enabled in project (android/app/proguard-rules.pro): ```proguard # llama.rn -keep class com.rnllama.** { *; } ``` By default, `llama.rn` will use pre-built libraries for Android. If you want to build from source, please set `rnllamaBuildFromSource` to `true` in `android/gradle.properties`. ## Obtain the model You can search HuggingFace for available models (Keyword: [`GGUF`](https://huggingface.co/search/full-text?q=GGUF&type=model)). For get a GGUF model or quantize manually, see [`Prepare and Quantize`](https://github.com/ggerganov/llama.cpp?tab=readme-ov-file#prepare-and-quantize) section in llama.cpp. ## Usage > **💡 New!** `llama.rn` now supports **multimodal models** with vision and audio capabilities! See the [Multimodal section](#multimodal-vision--audio) for details. Load model info only: ```js import { loadLlamaModelInfo } from 'llama.rn' const modelPath = 'file://<path to gguf model>' console.log('Model Info:', await loadLlamaModelInfo(modelPath)) ``` Initialize a Llama context & do completion: ```js import { initLlama } from 'llama.rn' // Initial a Llama context with the model (may take a while) const context = await initLlama({ model: modelPath, use_mlock: true, n_ctx: 2048, n_gpu_layers: 99, // number of layers to store in VRAM (Currently only for iOS) // embedding: true, // use embedding }) const stopWords = ['</s>', '<|end|>', '<|eot_id|>', '<|end_of_text|>', '<|im_end|>', '<|EOT|>', '<|END_OF_TURN_TOKEN|>', '<|end_of_turn|>', '<|endoftext|>'] // Do chat completion const msgResult = await context.completion( { messages: [ { role: 'system', content: 'This is a conversation between user and assistant, a friendly chatbot.', }, { role: 'user', content: 'Hello!', }, ], n_predict: 100, stop: stopWords, // ...other params }, (data) => { // This is a partial completion callback const { token } = data }, ) console.log('Result:', msgResult.text) console.log('Timings:', msgResult.timings) // Or do text completion const textResult = await context.completion( { prompt: 'This is a conversation between user and llama, a friendly chatbot. respond in simple markdown.\n\nUser: Hello!\nLlama:', n_predict: 100, stop: [...stopWords, 'Llama:', 'User:'], // ...other params }, (data) => { // This is a partial completion callback const { token } = data }, ) console.log('Result:', textResult.text) console.log('Timings:', textResult.timings) ``` The binding's deisgn inspired by [server.cpp](https://github.com/ggerganov/llama.cpp/tree/master/examples/server) example in llama.cpp: - `/completion` and `/chat/completions`: `context.completion(params, partialCompletionCallback)` - `/tokenize`: `context.tokenize(content)` - `/detokenize`: `context.detokenize(tokens)` - `/embedding`: `context.embedding(content)` - `/rerank`: `context.rerank(query, documents, params)` - ... Other methods Please visit the [Documentation](docs/API) for more details. You can also visit the [example](example) to see how to use it. ## Multimodal (Vision & Audio) `llama.rn` supports multimodal capabilities including vision (images) and audio processing. This allows you to interact with models that can understand both text and media content. ### Supported Media Formats **Images (Vision):** - JPEG, PNG, BMP, GIF, TGA, HDR, PIC, PNM - Base64 encoded images (data URLs) - Local file paths - \* Not supported HTTP URLs yet **Audio:** - WAV, MP3 formats - Base64 encoded audio (data URLs) - Local file paths - \* Not supported HTTP URLs yet ### Setup First, you need a multimodal model and its corresponding multimodal projector (mmproj) file, see [how to obtain mmproj](https://github.com/ggml-org/llama.cpp/tree/master/tools/mtmd#how-to-obtain-mmproj) for more details. ### Initialize Multimodal Support ```js import { initLlama } from 'llama.rn' // First initialize the model context const context = await initLlama({ model: 'path/to/your/multimodal-model.gguf', n_ctx: 4096, n_gpu_layers: 99, // Recommended for multimodal models // Important: Disable context shifting for multimodal ctx_shift: false, }) // Initialize multimodal support with mmproj file const success = await context.initMultimodal({ path: 'path/to/your/mmproj-model.gguf', use_gpu: true, // Recommended for better performance }) // Check if multimodal is enabled console.log('Multimodal enabled:', await context.isMultimodalEnabled()) if (success) { console.log('Multimodal support initialized!') // Check what modalities are supported const support = await context.getMultimodalSupport() console.log('Vision support:', support.vision) console.log('Audio support:', support.audio) } else { console.log('Failed to initialize multimodal support') } // Release multimodal context await context.releaseMultimodal() ``` ### Usage Examples #### Vision (Image Processing) ```js const result = await context.completion({ messages: [ { role: 'user', content: [ { type: 'text', text: 'What do you see in this image?', }, { type: 'image_url', image_url: { url: 'file:///path/to/image.jpg', // or base64: '...' }, }, ], }, ], n_predict: 100, temperature: 0.1, }) console.log('AI Response:', result.text) ``` #### Audio Processing ```js // Method 1: Using structured message content (Recommended) const result = await context.completion({ messages: [ { role: 'user', content: [ { type: 'text', text: 'Transcribe or describe this audio:', }, { type: 'input_audio', input_audio: { data: 'data:audio/wav;base64,UklGRiQAAABXQVZFZm10...', // or url: 'file:///path/to/audio.wav', format: 'wav', // or 'mp3' }, }, ], }, ], n_predict: 200, }) console.log('Transcription:', result.text) ``` ### Tokenization with Media ```js // Tokenize text with media const tokenizeResult = await context.tokenize( 'Describe this image: <__media__>', { media_paths: ['file:///path/to/image.jpg'] } ) console.log('Tokens:', tokenizeResult.tokens) console.log('Has media:', tokenizeResult.has_media) console.log('Media positions:', tokenizeResult.chunk_pos_media) ``` ### Notes - **Context Shifting**: Multimodal models require `ctx_shift: false` to maintain media token positioning - **Memory**: Multimodal models require more memory; use adequate `n_ctx` and consider GPU offloading - **Media Markers**: The system automatically handles `<__media__>` markers in prompts. When using structured message content, media items are automatically replaced with this marker - **Model Compatibility**: Ensure your model supports the media type you're trying to process ## Tool Calling `llama.rn` has universal tool call support by using [minja](https://github.com/google/minja) (as Jinja template parser) and [chat.cpp](https://github.com/ggerganov/llama.cpp/blob/master/common/chat.cpp) in llama.cpp. Example: ```js import { initLlama } from 'llama.rn' const context = await initLlama({ // ...params }) const { text, tool_calls } = await context.completion({ // ...params jinja: true, // Enable Jinja template parser tool_choice: 'auto', tools: [ { type: 'function', function: { name: 'ipython', description: 'Runs code in an ipython interpreter and returns the result of the execution after 60 seconds.', parameters: { type: 'object', properties: { code: { type: 'string', description: 'The code to run in the ipython interpreter.', }, }, required: ['code'], }, }, }, ], messages: [ { role: 'system', content: 'You are a helpful assistant that can answer questions and help with tasks.', }, { role: 'user', content: 'Test', }, ], }) console.log('Result:', text) // If tool_calls is not empty, it means the model has called the tool if (tool_calls) console.log('Tool Calls:', tool_calls) ``` You can check [chat.cpp](https://github.com/ggerganov/llama.cpp/blob/6eecde3cc8fda44da7794042e3668de4af3c32c6/common/chat.cpp#L7-L23) for models has native tool calling support, or it will fallback to `GENERIC` type tool call. The generic tool call will be always JSON object as output, the output will be like `{"response": "..."}` when it not decided to use tool call. ## Grammar Sampling GBNF (GGML BNF) is a format for defining [formal grammars](https://en.wikipedia.org/wiki/Formal_grammar) to constrain model outputs in `llama.cpp`. For example, you can use it to force the model to generate valid JSON, or speak only in emojis. You can see [GBNF Guide](https://github.com/ggerganov/llama.cpp/tree/master/grammars) for more details. `llama.rn` provided a built-in function to convert JSON Schema to GBNF: Example gbnf grammar: ```bnf root ::= object value ::= object | array | string | number | ("true" | "false" | "null") ws object ::= "{" ws ( string ":" ws value ("," ws string ":" ws value)* )? "}" ws array ::= "[" ws ( value ("," ws value)* )? "]" ws string ::= "\"" ( [^"\\\x7F\x00-\x1F] | "\\" (["\\bfnrt] | "u" [0-9a-fA-F]{4}) # escapes )* "\"" ws number ::= ("-"? ([0-9] | [1-9] [0-9]{0,15})) ("." [0-9]+)? ([eE] [-+]? [0-9] [1-9]{0,15})? ws # Optional space: by convention, applied in this grammar after literal chars when allowed ws ::= | " " | "\n" [ \t]{0,20} ``` ```js import { initLlama } from 'llama.rn' const gbnf = '...' const context = await initLlama({ // ...params grammar: gbnf, }) const { text } = await context.completion({ // ...params messages: [ { role: 'system', content: 'You are a helpful assistant that can answer questions and help with tasks.', }, { role: 'user', content: 'Test', }, ], }) console.log('Result:', text) ``` Also, this is how `json_schema` works in `response_format` during completion, it converts the json_schema to gbnf grammar. ## Session (State) The session file is a binary file that contains the state of the context, it can saves time of prompt processing. ```js const context = await initLlama({ ...params }) // After prompt processing or completion ... // Save the session await context.saveSession('<path to save session>') // Load the session await context.loadSession('<path to load session>') ``` ### Notes - \* Session is currently not supported save state from multimodal context, so it only stores the text chunk before the first media chunk. ## Embedding The embedding API is used to get the embedding of a text. ```js const context = await initLlama({ ...params, embedding: true, }) const { embedding } = await context.embedding('Hello, world!') ``` - You can use model like [nomic-ai/nomic-embed-text-v1.5-GGUF](https://huggingface.co/nomic-ai/nomic-embed-text-v1.5-GGUF) for better embedding quality. - You can use DB like [op-sqlite](https://github.com/OP-Engineering/op-sqlite) with sqlite-vec support to store and search embeddings. ## Rerank The rerank API is used to rank documents based on their relevance to a query. This is particularly useful for improving search results and implementing retrieval-augmented generation (RAG) systems. ```js const context = await initLlama({ ...params, embedding: true, // Required for reranking pooling_type: 'rank', // Use rank pooling for rerank models }) // Rerank documents based on relevance to query const results = await context.rerank( 'What is artificial intelligence?', // query [ 'AI is a branch of computer science.', 'The weather is nice today.', 'Machine learning is a subset of AI.', 'I like pizza.', ], // documents to rank { normalize: 1, // Optional: normalize scores (default: from model config) } ) // Results are automatically sorted by score (highest first) results.forEach((result, index) => { console.log(`Rank ${index + 1}:`, { score: result.score, document: result.document, originalIndex: result.index, }) }) ``` ### Notes - **Model Requirements**: Reranking requires models with `RANK` pooling type (e.g., reranker models) - **Embedding Enabled**: The context must have `embedding: true` to use rerank functionality - **Automatic Sorting**: Results are returned sorted by relevance score in descending order - **Document Access**: Each result includes the original document text and its index in the input array - **Score Interpretation**: Higher scores indicate higher relevance to the query ### Recommended Models - [jinaai - jina-reranker-v2-base-multilingual-GGUF](https://huggingface.co/gpustack/jina-reranker-v2-base-multilingual-GGUF) - [BAAI - bge-reranker-v2-m3-GGUF](https://huggingface.co/gpustack/bge-reranker-v2-m3-GGUF) - Other models with "rerank" or "reranker" in their name and GGUF format ## Mock `llama.rn` We have provided a mock version of `llama.rn` for testing purpose you can use on Jest: ```js jest.mock('llama.rn', () => require('llama.rn/jest/mock')) ``` ## NOTE iOS: - The [Extended Virtual Addressing](https://developer.apple.com/documentation/bundleresources/entitlements/com_apple_developer_kernel_extended-virtual-addressing) and [Increased Memory Limit](https://developer.apple.com/documentation/bundleresources/entitlements/com.apple.developer.kernel.increased-memory-limit?language=objc) capabilities are recommended to enable on iOS project. - Metal: - We have tested to know some devices is not able to use Metal (GPU) due to llama.cpp used SIMD-scoped operation, you can check if your device is supported in [Metal feature set tables](https://developer.apple.com/metal/Metal-Feature-Set-Tables.pdf), Apple7 GPU will be the minimum requirement. - It's also not supported in iOS simulator due to [this limitation](https://developer.apple.com/documentation/metal/developing_metal_apps_that_run_in_simulator#3241609), we used constant buffers more than 14. Android: - Currently only supported arm64-v8a / x86_64 platform, this means you can't initialize a context on another platforms. The 64-bit platform are recommended because it can allocate more memory for the model. - No integrated any GPU backend yet. ## Contributing See the [contributing guide](CONTRIBUTING.md) to learn how to contribute to the repository and the development workflow. ## Apps using `llama.rn` - [BRICKS](https://bricks.tools): Our product for building interactive signage in simple way. We provide LLM functions as Generator LLM/Assistant. - [ChatterUI](https://github.com/Vali-98/ChatterUI): Simple frontend for LLMs built in react-native. - [PocketPal AI](https://github.com/a-ghorbani/pocketpal-ai): An app that brings language models directly to your phone. ## Node.js binding - [llama.node](https://github.com/mybigday/llama.node): An another Node.js binding of `llama.cpp` but made API same as `llama.rn`. ## License MIT --- Made with [create-react-native-library](https://github.com/callstack/react-native-builder-bob) --- <p align="center"> <a href="https://bricks.tools"> <img width="90px" src="https://avatars.githubusercontent.com/u/17320237?s=200&v=4"> </a> <p align="center"> Built and maintained by <a href="https://bricks.tools">BRICKS</a>. </p> </p>