cui-llama.rn
Version:
Fork of llama.rn for ChatterUI
546 lines (417 loc) • 17.1 kB
Markdown
# cui-llama.rn
This is a fork of [llama.rn](https://github.com/mybigday/llama.rn) meant for [ChatterUI](https://github.com/Vali-98/ChatterUI)
This fork exists to update llama.cpp on a more frequent basis, plus adding useful features to ChatterUI.
The following features have been added for Android:
- Added stopping prompt processing between batches, vital for mobile devices with very slow prompt processing
- `vocab_only` mode: utilize the llama.cpp tokenizer
- tokenizeSync: non-blocking, synchronous tokenizer function
- Context Shift taken from [kobold.cpp](https://github.com/LostRuins/koboldcpp)
- Retrieving CPU Features to check for i8mm and dotprod flags
Original repo README.md below.
# llama.rn
[](https://github.com/mybigday/llama.rn/actions)
[](https://opensource.org/licenses/MIT)
[](https://www.npmjs.com/package/llama.rn/)
React Native binding of [llama.cpp](https://github.com/ggerganov/llama.cpp).
[llama.cpp](https://github.com/ggerganov/llama.cpp): Inference of [LLaMA](https://arxiv.org/abs/2302.13971) model in pure C/C++
## Installation
```sh
npm install llama.rn
```
#### iOS
Please re-run `npx pod-install` again.
By default, `llama.rn` will use pre-built `rnllama.xcframework` for iOS. If you want to build from source, please set `RNLLAMA_BUILD_FROM_SOURCE` to `1` in your Podfile.
#### Android
Add proguard rule if it's enabled in project (android/app/proguard-rules.pro):
```proguard
# llama.rn
-keep class com.rnllama.** { *; }
```
By default, `llama.rn` will use pre-built libraries for Android. If you want to build from source, please set `rnllamaBuildFromSource` to `true` in `android/gradle.properties`.
## Obtain the model
You can search HuggingFace for available models (Keyword: [`GGUF`](https://huggingface.co/search/full-text?q=GGUF&type=model)).
For get a GGUF model or quantize manually, see [`Prepare and Quantize`](https://github.com/ggerganov/llama.cpp?tab=readme-ov-file#prepare-and-quantize) section in llama.cpp.
## Usage
> **💡 New!** `llama.rn` now supports **multimodal models** with vision and audio capabilities! See the [Multimodal section](#multimodal-vision--audio) for details.
Load model info only:
```js
import { loadLlamaModelInfo } from 'llama.rn'
const modelPath = 'file://<path to gguf model>'
console.log('Model Info:', await loadLlamaModelInfo(modelPath))
```
Initialize a Llama context & do completion:
```js
import { initLlama } from 'llama.rn'
// Initial a Llama context with the model (may take a while)
const context = await initLlama({
model: modelPath,
use_mlock: true,
n_ctx: 2048,
n_gpu_layers: 99, // number of layers to store in VRAM (Currently only for iOS)
// embedding: true, // use embedding
})
const stopWords = ['</s>', '<|end|>', '<|eot_id|>', '<|end_of_text|>', '<|im_end|>', '<|EOT|>', '<|END_OF_TURN_TOKEN|>', '<|end_of_turn|>', '<|endoftext|>']
// Do chat completion
const msgResult = await context.completion(
{
messages: [
{
role: 'system',
content: 'This is a conversation between user and assistant, a friendly chatbot.',
},
{
role: 'user',
content: 'Hello!',
},
],
n_predict: 100,
stop: stopWords,
// ...other params
},
(data) => {
// This is a partial completion callback
const { token } = data
},
)
console.log('Result:', msgResult.text)
console.log('Timings:', msgResult.timings)
// Or do text completion
const textResult = await context.completion(
{
prompt:
'This is a conversation between user and llama, a friendly chatbot. respond in simple markdown.\n\nUser: Hello!\nLlama:',
n_predict: 100,
stop: [...stopWords, 'Llama:', 'User:'],
// ...other params
},
(data) => {
// This is a partial completion callback
const { token } = data
},
)
console.log('Result:', textResult.text)
console.log('Timings:', textResult.timings)
```
The binding's deisgn inspired by [server.cpp](https://github.com/ggerganov/llama.cpp/tree/master/examples/server) example in llama.cpp:
- `/completion` and `/chat/completions`: `context.completion(params, partialCompletionCallback)`
- `/tokenize`: `context.tokenize(content)`
- `/detokenize`: `context.detokenize(tokens)`
- `/embedding`: `context.embedding(content)`
- `/rerank`: `context.rerank(query, documents, params)`
- ... Other methods
Please visit the [Documentation](docs/API) for more details.
You can also visit the [example](example) to see how to use it.
## Multimodal (Vision & Audio)
`llama.rn` supports multimodal capabilities including vision (images) and audio processing. This allows you to interact with models that can understand both text and media content.
### Supported Media Formats
**Images (Vision):**
- JPEG, PNG, BMP, GIF, TGA, HDR, PIC, PNM
- Base64 encoded images (data URLs)
- Local file paths
- \* Not supported HTTP URLs yet
**Audio:**
- WAV, MP3 formats
- Base64 encoded audio (data URLs)
- Local file paths
- \* Not supported HTTP URLs yet
### Setup
First, you need a multimodal model and its corresponding multimodal projector (mmproj) file, see [how to obtain mmproj](https://github.com/ggml-org/llama.cpp/tree/master/tools/mtmd#how-to-obtain-mmproj) for more details.
### Initialize Multimodal Support
```js
import { initLlama } from 'llama.rn'
// First initialize the model context
const context = await initLlama({
model: 'path/to/your/multimodal-model.gguf',
n_ctx: 4096,
n_gpu_layers: 99, // Recommended for multimodal models
// Important: Disable context shifting for multimodal
ctx_shift: false,
})
// Initialize multimodal support with mmproj file
const success = await context.initMultimodal({
path: 'path/to/your/mmproj-model.gguf',
use_gpu: true, // Recommended for better performance
})
// Check if multimodal is enabled
console.log('Multimodal enabled:', await context.isMultimodalEnabled())
if (success) {
console.log('Multimodal support initialized!')
// Check what modalities are supported
const support = await context.getMultimodalSupport()
console.log('Vision support:', support.vision)
console.log('Audio support:', support.audio)
} else {
console.log('Failed to initialize multimodal support')
}
// Release multimodal context
await context.releaseMultimodal()
```
### Usage Examples
#### Vision (Image Processing)
```js
const result = await context.completion({
messages: [
{
role: 'user',
content: [
{
type: 'text',
text: 'What do you see in this image?',
},
{
type: 'image_url',
image_url: {
url: 'file:///path/to/image.jpg',
// or base64: '...'
},
},
],
},
],
n_predict: 100,
temperature: 0.1,
})
console.log('AI Response:', result.text)
```
#### Audio Processing
```js
// Method 1: Using structured message content (Recommended)
const result = await context.completion({
messages: [
{
role: 'user',
content: [
{
type: 'text',
text: 'Transcribe or describe this audio:',
},
{
type: 'input_audio',
input_audio: {
data: 'data:audio/wav;base64,UklGRiQAAABXQVZFZm10...',
// or url: 'file:///path/to/audio.wav',
format: 'wav', // or 'mp3'
},
},
],
},
],
n_predict: 200,
})
console.log('Transcription:', result.text)
```
### Tokenization with Media
```js
// Tokenize text with media
const tokenizeResult = await context.tokenize(
'Describe this image: <__media__>',
{
media_paths: ['file:///path/to/image.jpg']
}
)
console.log('Tokens:', tokenizeResult.tokens)
console.log('Has media:', tokenizeResult.has_media)
console.log('Media positions:', tokenizeResult.chunk_pos_media)
```
### Notes
- **Context Shifting**: Multimodal models require `ctx_shift: false` to maintain media token positioning
- **Memory**: Multimodal models require more memory; use adequate `n_ctx` and consider GPU offloading
- **Media Markers**: The system automatically handles `<__media__>` markers in prompts. When using structured message content, media items are automatically replaced with this marker
- **Model Compatibility**: Ensure your model supports the media type you're trying to process
## Tool Calling
`llama.rn` has universal tool call support by using [minja](https://github.com/google/minja) (as Jinja template parser) and [chat.cpp](https://github.com/ggerganov/llama.cpp/blob/master/common/chat.cpp) in llama.cpp.
Example:
```js
import { initLlama } from 'llama.rn'
const context = await initLlama({
// ...params
})
const { text, tool_calls } = await context.completion({
// ...params
jinja: true, // Enable Jinja template parser
tool_choice: 'auto',
tools: [
{
type: 'function',
function: {
name: 'ipython',
description:
'Runs code in an ipython interpreter and returns the result of the execution after 60 seconds.',
parameters: {
type: 'object',
properties: {
code: {
type: 'string',
description: 'The code to run in the ipython interpreter.',
},
},
required: ['code'],
},
},
},
],
messages: [
{
role: 'system',
content: 'You are a helpful assistant that can answer questions and help with tasks.',
},
{
role: 'user',
content: 'Test',
},
],
})
console.log('Result:', text)
// If tool_calls is not empty, it means the model has called the tool
if (tool_calls) console.log('Tool Calls:', tool_calls)
```
You can check [chat.cpp](https://github.com/ggerganov/llama.cpp/blob/6eecde3cc8fda44da7794042e3668de4af3c32c6/common/chat.cpp#L7-L23) for models has native tool calling support, or it will fallback to `GENERIC` type tool call.
The generic tool call will be always JSON object as output, the output will be like `{"response": "..."}` when it not decided to use tool call.
## Grammar Sampling
GBNF (GGML BNF) is a format for defining [formal grammars](https://en.wikipedia.org/wiki/Formal_grammar) to constrain model outputs in `llama.cpp`. For example, you can use it to force the model to generate valid JSON, or speak only in emojis.
You can see [GBNF Guide](https://github.com/ggerganov/llama.cpp/tree/master/grammars) for more details.
`llama.rn` provided a built-in function to convert JSON Schema to GBNF:
Example gbnf grammar:
```bnf
root ::= object
value ::= object | array | string | number | ("true" | "false" | "null") ws
object ::=
"{" ws (
string ":" ws value
("," ws string ":" ws value)*
)? "}" ws
array ::=
"[" ws (
value
("," ws value)*
)? "]" ws
string ::=
"\"" (
[^"\\\x7F\x00-\x1F] |
"\\" (["\\bfnrt] | "u" [0-9a-fA-F]{4}) # escapes
)* "\"" ws
number ::= ("-"? ([0-9] | [1-9] [0-9]{0,15})) ("." [0-9]+)? ([eE] [-+]? [0-9] [1-9]{0,15})? ws
# Optional space: by convention, applied in this grammar after literal chars when allowed
ws ::= | " " | "\n" [ \t]{0,20}
```
```js
import { initLlama } from 'llama.rn'
const gbnf = '...'
const context = await initLlama({
// ...params
grammar: gbnf,
})
const { text } = await context.completion({
// ...params
messages: [
{
role: 'system',
content: 'You are a helpful assistant that can answer questions and help with tasks.',
},
{
role: 'user',
content: 'Test',
},
],
})
console.log('Result:', text)
```
Also, this is how `json_schema` works in `response_format` during completion, it converts the json_schema to gbnf grammar.
## Session (State)
The session file is a binary file that contains the state of the context, it can saves time of prompt processing.
```js
const context = await initLlama({ ...params })
// After prompt processing or completion ...
// Save the session
await context.saveSession('<path to save session>')
// Load the session
await context.loadSession('<path to load session>')
```
### Notes
- \* Session is currently not supported save state from multimodal context, so it only stores the text chunk before the first media chunk.
## Embedding
The embedding API is used to get the embedding of a text.
```js
const context = await initLlama({
...params,
embedding: true,
})
const { embedding } = await context.embedding('Hello, world!')
```
- You can use model like [nomic-ai/nomic-embed-text-v1.5-GGUF](https://huggingface.co/nomic-ai/nomic-embed-text-v1.5-GGUF) for better embedding quality.
- You can use DB like [op-sqlite](https://github.com/OP-Engineering/op-sqlite) with sqlite-vec support to store and search embeddings.
## Rerank
The rerank API is used to rank documents based on their relevance to a query. This is particularly useful for improving search results and implementing retrieval-augmented generation (RAG) systems.
```js
const context = await initLlama({
...params,
embedding: true, // Required for reranking
pooling_type: 'rank', // Use rank pooling for rerank models
})
// Rerank documents based on relevance to query
const results = await context.rerank(
'What is artificial intelligence?', // query
[
'AI is a branch of computer science.',
'The weather is nice today.',
'Machine learning is a subset of AI.',
'I like pizza.',
], // documents to rank
{
normalize: 1, // Optional: normalize scores (default: from model config)
}
)
// Results are automatically sorted by score (highest first)
results.forEach((result, index) => {
console.log(`Rank ${index + 1}:`, {
score: result.score,
document: result.document,
originalIndex: result.index,
})
})
```
### Notes
- **Model Requirements**: Reranking requires models with `RANK` pooling type (e.g., reranker models)
- **Embedding Enabled**: The context must have `embedding: true` to use rerank functionality
- **Automatic Sorting**: Results are returned sorted by relevance score in descending order
- **Document Access**: Each result includes the original document text and its index in the input array
- **Score Interpretation**: Higher scores indicate higher relevance to the query
### Recommended Models
- [jinaai - jina-reranker-v2-base-multilingual-GGUF](https://huggingface.co/gpustack/jina-reranker-v2-base-multilingual-GGUF)
- [BAAI - bge-reranker-v2-m3-GGUF](https://huggingface.co/gpustack/bge-reranker-v2-m3-GGUF)
- Other models with "rerank" or "reranker" in their name and GGUF format
## Mock `llama.rn`
We have provided a mock version of `llama.rn` for testing purpose you can use on Jest:
```js
jest.mock('llama.rn', () => require('llama.rn/jest/mock'))
```
## NOTE
iOS:
- The [Extended Virtual Addressing](https://developer.apple.com/documentation/bundleresources/entitlements/com_apple_developer_kernel_extended-virtual-addressing) and [Increased Memory Limit](https://developer.apple.com/documentation/bundleresources/entitlements/com.apple.developer.kernel.increased-memory-limit?language=objc) capabilities are recommended to enable on iOS project.
- Metal:
- We have tested to know some devices is not able to use Metal (GPU) due to llama.cpp used SIMD-scoped operation, you can check if your device is supported in [Metal feature set tables](https://developer.apple.com/metal/Metal-Feature-Set-Tables.pdf), Apple7 GPU will be the minimum requirement.
- It's also not supported in iOS simulator due to [this limitation](https://developer.apple.com/documentation/metal/developing_metal_apps_that_run_in_simulator#3241609), we used constant buffers more than 14.
Android:
- Currently only supported arm64-v8a / x86_64 platform, this means you can't initialize a context on another platforms. The 64-bit platform are recommended because it can allocate more memory for the model.
- No integrated any GPU backend yet.
## Contributing
See the [contributing guide](CONTRIBUTING.md) to learn how to contribute to the repository and the development workflow.
## Apps using `llama.rn`
- [BRICKS](https://bricks.tools): Our product for building interactive signage in simple way. We provide LLM functions as Generator LLM/Assistant.
- [ChatterUI](https://github.com/Vali-98/ChatterUI): Simple frontend for LLMs built in react-native.
- [PocketPal AI](https://github.com/a-ghorbani/pocketpal-ai): An app that brings language models directly to your phone.
## Node.js binding
- [llama.node](https://github.com/mybigday/llama.node): An another Node.js binding of `llama.cpp` but made API same as `llama.rn`.
## License
MIT
---
Made with [create-react-native-library](https://github.com/callstack/react-native-builder-bob)
---
<p align="center">
<a href="https://bricks.tools">
<img width="90px" src="https://avatars.githubusercontent.com/u/17320237?s=200&v=4">
</a>
<p align="center">
Built and maintained by <a href="https://bricks.tools">BRICKS</a>.
</p>
</p>