UNPKG

css-doodle

Version:

A web component for drawing patterns with CSS

61 lines (55 loc) 2.57 kB
/** * Improved noise by Ken Perlin * Translated from: https://mrl.nyu.edu/~perlin/noise/ */ const map = [ 151,160,137,91,90,15, 131,13,201,95,96,53,194,233,7,225,140,36,103,30,69,142,8,99,37,240,21,10,23, 190,6,148,247,120,234,75,0,26,197,62,94,252,219,203,117,35,11,32,57,177,33, 88,237,149,56,87,174,20,125,136,171,168,68,175,74,165,71,134,139,48,27,166, 77,146,158,231,83,111,229,122,60,211,133,230,220,105,92,41,55,46,245,40,244, 102,143,54,65,25,63,161,1,216,80,73,209,76,132,187,208,89,18,169,200,196, 135,130,116,188,159,86,164,100,109,198,173,186,3,64,52,217,226,250,124,123, 5,202,38,147,118,126,255,82,85,212,207,206,59,227,47,16,58,17,182,189,28,42, 223,183,170,213,119,248,152,2,44,154,163,70,221,153,101,155,167,43,172,9, 129,22,39,253,19,98,108,110,79,113,224,232,178,185,112,104,218,246,97,228, 251,34,242,193,238,210,144,12,191,179,162,241,81,51,145,235,249,14,239,107, 49,192,214,31,181,199,106,157,184,84,204,176,115,121,50,45,127,4,150,254, 138,236,205,93,222,114,67,29,24,72,243,141,128,195,78,66,215,61,156,180 ]; function lerp(t, a, b) { return a + t * (b - a); }; // Convert LO 4 bits of hash code into 12 gradient directions. function grad(hash, x, y, z) { let h = hash & 15, u = h < 8 ? x : y, v = h < 4 ? y : h == 12 || h == 14 ? x : z; return ((h&1) == 0 ? u : -u) + ((h&2) == 0 ? v : -v); } export default class Perlin { constructor() { this.p = [].concat(map, map); } noise(x, y, z) { let { p } = this; // Find unit cube that contains point. let [X, Y, Z] = [x, y, z].map(n => Math.floor(n) & 255); // Find relative x, y, z of point in cube. [x, y, z] = [x, y, z].map(n => n - Math.floor(n)); // Compute fade curves for each of x, y, z. let [u, v, w] = [x, y, z].map(n => n * n * n * (n * (n * 6 - 15) + 10)); // hash coordinates of the 8 cube corners. let A = p[X ]+Y, AA = p[A]+Z, AB = p[A+1]+Z, B = p[X+1]+Y, BA = p[B]+Z, BB = p[B+1]+Z; // And add blended results from 8 corners of cube. return lerp(w, lerp(v, lerp(u, grad(p[AA ], x , y , z ), grad(p[BA ], x-1, y , z )), lerp(u, grad(p[AB ], x , y-1, z ), grad(p[BB ], x-1, y-1, z ))), lerp(v, lerp(u, grad(p[AA+1], x , y , z-1 ), grad(p[BA+1], x-1, y , z-1 )), lerp(u, grad(p[AB+1], x , y-1, z-1 ), grad(p[BB+1], x-1, y-1, z-1 )))); } }