UNPKG

cryptico

Version:
485 lines (406 loc) 13 kB
// Depends on jsbn.js and rng.js // Version 1.1: support utf-8 encoding in pkcs1pad2 // convert a (hex) string to a bignum object function parseBigInt(str, r) { return new BigInteger(str, r); } function linebrk(s, n) { var ret = ""; var i = 0; while (i + n < s.length) { ret += s.substring(i, i + n) + "\n"; i += n; } return ret + s.substring(i, s.length); } function byte2Hex(b) { if (b < 0x10) return "0" + b.toString(16); else return b.toString(16); } // PKCS#1 (type 2, random) pad input string s to n bytes, and return a bigint function pkcs1pad2(s, n) { if (n < s.length + 11) { // TODO: fix for utf-8 //alert("Message too long for RSA (n=" + n + ", l=" + s.length + ")"); //return null; throw "Message too long for RSA (n=" + n + ", l=" + s.length + ")"; } var ba = new Array(); var i = s.length - 1; while (i >= 0 && n > 0) { var c = s.charCodeAt(i--); if (c < 128) { // encode using utf-8 ba[--n] = c; } else if ((c > 127) && (c < 2048)) { ba[--n] = (c & 63) | 128; ba[--n] = (c >> 6) | 192; } else { ba[--n] = (c & 63) | 128; ba[--n] = ((c >> 6) & 63) | 128; ba[--n] = (c >> 12) | 224; } } ba[--n] = 0; var rng = new SecureRandom(); var x = new Array(); while (n > 2) { // random non-zero pad x[0] = 0; while (x[0] == 0) rng.nextBytes(x); ba[--n] = x[0]; } ba[--n] = 2; ba[--n] = 0; return new BigInteger(ba); } // "empty" RSA key constructor function RSAKey() { this.n = null; this.e = 0; this.d = null; this.p = null; this.q = null; this.dmp1 = null; this.dmq1 = null; this.coeff = null; } // Set the public key fields N and e from hex strings function RSASetPublic(N, E) { if (N != null && E != null && N.length > 0 && E.length > 0) { this.n = parseBigInt(N, 16); this.e = parseInt(E, 16); } else alert("Invalid RSA public key"); } // Perform raw public operation on "x": return x^e (mod n) function RSADoPublic(x) { return x.modPowInt(this.e, this.n); } // Return the PKCS#1 RSA encryption of "text" as an even-length hex string function RSAEncrypt(text) { var m = pkcs1pad2(text, (this.n.bitLength() + 7) >> 3); if (m == null) return null; var c = this.doPublic(m); if (c == null) return null; var h = c.toString(16); if ((h.length & 1) == 0) return h; else return "0" + h; } function RSAToJSON() { return { coeff: this.coeff.toString(16), d: this.d.toString(16), dmp1: this.dmp1.toString(16), dmq1: this.dmq1.toString(16), e: this.e.toString(16), n: this.n.toString(16), p: this.p.toString(16), q: this.q.toString(16), } } function RSAParse(rsaString) { var json = JSON.parse(rsaString); var rsa = new RSAKey(); rsa.setPrivateEx(json.n, json.e, json.d, json.p, json.q, json.dmp1, json.dmq1, json.coeff); return rsa; } // Return the PKCS#1 RSA encryption of "text" as a Base64-encoded string //function RSAEncryptB64(text) { // var h = this.encrypt(text); // if(h) return hex2b64(h); else return null; //} // protected RSAKey.prototype.doPublic = RSADoPublic; // public RSAKey.prototype.setPublic = RSASetPublic; RSAKey.prototype.encrypt = RSAEncrypt; RSAKey.prototype.toJSON = RSAToJSON; RSAKey.parse = RSAParse; // Version 1.1: support utf-8 decoding in pkcs1unpad2 // Undo PKCS#1 (type 2, random) padding and, if valid, return the plaintext function pkcs1unpad2(d, n) { var b = d.toByteArray(); var i = 0; while (i < b.length && b[i] == 0)++i; if (b.length - i != n - 1 || b[i] != 2) return null; ++i; while (b[i] != 0) if (++i >= b.length) return null; var ret = ""; while (++i < b.length) { var c = b[i] & 255; if (c < 128) { // utf-8 decode ret += String.fromCharCode(c); } else if ((c > 191) && (c < 224)) { ret += String.fromCharCode(((c & 31) << 6) | (b[i + 1] & 63)); ++i; } else { ret += String.fromCharCode(((c & 15) << 12) | ((b[i + 1] & 63) << 6) | (b[i + 2] & 63)); i += 2; } } return ret; } // Set the private key fields N, e, and d from hex strings function RSASetPrivate(N, E, D) { if (N != null && E != null && N.length > 0 && E.length > 0) { this.n = parseBigInt(N, 16); this.e = parseInt(E, 16); this.d = parseBigInt(D, 16); } else alert("Invalid RSA private key"); } // Set the private key fields N, e, d and CRT params from hex strings function RSASetPrivateEx(N, E, D, P, Q, DP, DQ, C) { if (N != null && E != null && N.length > 0 && E.length > 0) { this.n = parseBigInt(N, 16); this.e = parseInt(E, 16); this.d = parseBigInt(D, 16); this.p = parseBigInt(P, 16); this.q = parseBigInt(Q, 16); this.dmp1 = parseBigInt(DP, 16); this.dmq1 = parseBigInt(DQ, 16); this.coeff = parseBigInt(C, 16); } else alert("Invalid RSA private key"); } // Generate a new random private key B bits long, using public expt E function RSAGenerate(B, E) { var rng = new SeededRandom(); var qs = B >> 1; this.e = parseInt(E, 16); var ee = new BigInteger(E, 16); for (;;) { for (;;) { this.p = new BigInteger(B - qs, 1, rng); if (this.p.subtract(BigInteger.ONE).gcd(ee).compareTo(BigInteger.ONE) == 0 && this.p.isProbablePrime(10)) break; } for (;;) { this.q = new BigInteger(qs, 1, rng); if (this.q.subtract(BigInteger.ONE).gcd(ee).compareTo(BigInteger.ONE) == 0 && this.q.isProbablePrime(10)) break; } if (this.p.compareTo(this.q) <= 0) { var t = this.p; this.p = this.q; this.q = t; } var p1 = this.p.subtract(BigInteger.ONE); var q1 = this.q.subtract(BigInteger.ONE); var phi = p1.multiply(q1); if (phi.gcd(ee).compareTo(BigInteger.ONE) == 0) { this.n = this.p.multiply(this.q); this.d = ee.modInverse(phi); this.dmp1 = this.d.mod(p1); this.dmq1 = this.d.mod(q1); this.coeff = this.q.modInverse(this.p); break; } } } // Perform raw private operation on "x": return x^d (mod n) function RSADoPrivate(x) { if (this.p == null || this.q == null) return x.modPow(this.d, this.n); // TODO: re-calculate any missing CRT params var xp = x.mod(this.p).modPow(this.dmp1, this.p); var xq = x.mod(this.q).modPow(this.dmq1, this.q); while (xp.compareTo(xq) < 0) xp = xp.add(this.p); return xp.subtract(xq).multiply(this.coeff).mod(this.p).multiply(this.q).add(xq); } // Return the PKCS#1 RSA decryption of "ctext". // "ctext" is an even-length hex string and the output is a plain string. function RSADecrypt(ctext) { var c = parseBigInt(ctext, 16); var m = this.doPrivate(c); if (m == null) return null; return pkcs1unpad2(m, (this.n.bitLength() + 7) >> 3); } // protected RSAKey.prototype.doPrivate = RSADoPrivate; // public RSAKey.prototype.setPrivate = RSASetPrivate; RSAKey.prototype.setPrivateEx = RSASetPrivateEx; RSAKey.prototype.generate = RSAGenerate; RSAKey.prototype.decrypt = RSADecrypt; // // rsa-sign.js - adding signing functions to RSAKey class. // // // version: 1.0 (2010-Jun-03) // // Copyright (c) 2010 Kenji Urushima (kenji.urushima@gmail.com) // // This software is licensed under the terms of the MIT License. // http://www.opensource.org/licenses/mit-license.php // // The above copyright and license notice shall be // included in all copies or substantial portions of the Software. // // Depends on: // function sha1.hex(s) of sha1.js // jsbn.js // jsbn2.js // rsa.js // rsa2.js // // keysize / pmstrlen // 512 / 128 // 1024 / 256 // 2048 / 512 // 4096 / 1024 // As for _RSASGIN_DIHEAD values for each hash algorithm, see PKCS#1 v2.1 spec (p38). var _RSASIGN_DIHEAD = []; _RSASIGN_DIHEAD['sha1'] = "3021300906052b0e03021a05000414"; _RSASIGN_DIHEAD['sha256'] = "3031300d060960864801650304020105000420"; //_RSASIGN_DIHEAD['md2'] = "3020300c06082a864886f70d020205000410"; //_RSASIGN_DIHEAD['md5'] = "3020300c06082a864886f70d020505000410"; //_RSASIGN_DIHEAD['sha384'] = "3041300d060960864801650304020205000430"; //_RSASIGN_DIHEAD['sha512'] = "3051300d060960864801650304020305000440"; var _RSASIGN_HASHHEXFUNC = []; _RSASIGN_HASHHEXFUNC['sha1'] = sha1.hex; _RSASIGN_HASHHEXFUNC['sha256'] = sha256.hex; // ======================================================================== // Signature Generation // ======================================================================== function _rsasign_getHexPaddedDigestInfoForString(s, keySize, hashAlg) { var pmStrLen = keySize / 4; var hashFunc = _RSASIGN_HASHHEXFUNC[hashAlg]; var sHashHex = hashFunc(s); var sHead = "0001"; var sTail = "00" + _RSASIGN_DIHEAD[hashAlg] + sHashHex; var sMid = ""; var fLen = pmStrLen - sHead.length - sTail.length; for (var i = 0; i < fLen; i += 2) { sMid += "ff"; } sPaddedMessageHex = sHead + sMid + sTail; return sPaddedMessageHex; } function _rsasign_signString(s, hashAlg) { var hPM = _rsasign_getHexPaddedDigestInfoForString(s, this.n.bitLength(), hashAlg); var biPaddedMessage = parseBigInt(hPM, 16); var biSign = this.doPrivate(biPaddedMessage); var hexSign = biSign.toString(16); return hexSign; } function _rsasign_signStringWithSHA1(s) { var hPM = _rsasign_getHexPaddedDigestInfoForString(s, this.n.bitLength(), 'sha1'); var biPaddedMessage = parseBigInt(hPM, 16); var biSign = this.doPrivate(biPaddedMessage); var hexSign = biSign.toString(16); return hexSign; } function _rsasign_signStringWithSHA256(s) { var hPM = _rsasign_getHexPaddedDigestInfoForString(s, this.n.bitLength(), 'sha256'); var biPaddedMessage = parseBigInt(hPM, 16); var biSign = this.doPrivate(biPaddedMessage); var hexSign = biSign.toString(16); return hexSign; } // ======================================================================== // Signature Verification // ======================================================================== function _rsasign_getDecryptSignatureBI(biSig, hN, hE) { var rsa = new RSAKey(); rsa.setPublic(hN, hE); var biDecryptedSig = rsa.doPublic(biSig); return biDecryptedSig; } function _rsasign_getHexDigestInfoFromSig(biSig, hN, hE) { var biDecryptedSig = _rsasign_getDecryptSignatureBI(biSig, hN, hE); var hDigestInfo = biDecryptedSig.toString(16).replace(/^1f+00/, ''); return hDigestInfo; } function _rsasign_getAlgNameAndHashFromHexDisgestInfo(hDigestInfo) { for (var algName in _RSASIGN_DIHEAD) { var head = _RSASIGN_DIHEAD[algName]; var len = head.length; if (hDigestInfo.substring(0, len) == head) { var a = [algName, hDigestInfo.substring(len)]; return a; } } return []; } function _rsasign_verifySignatureWithArgs(sMsg, biSig, hN, hE) { var hDigestInfo = _rsasign_getHexDigestInfoFromSig(biSig, hN, hE); var digestInfoAry = _rsasign_getAlgNameAndHashFromHexDisgestInfo(hDigestInfo); if (digestInfoAry.length == 0) return false; var algName = digestInfoAry[0]; var diHashValue = digestInfoAry[1]; var ff = _RSASIGN_HASHHEXFUNC[algName]; var msgHashValue = ff(sMsg); return (diHashValue == msgHashValue); } function _rsasign_verifyHexSignatureForMessage(hSig, sMsg) { var biSig = parseBigInt(hSig, 16); var result = _rsasign_verifySignatureWithArgs(sMsg, biSig, this.n.toString(16), this.e.toString(16)); return result; } function _rsasign_verifyString(sMsg, hSig) { hSig = hSig.replace(/[ \n]+/g, ""); var biSig = parseBigInt(hSig, 16); var biDecryptedSig = this.doPublic(biSig); var hDigestInfo = biDecryptedSig.toString(16).replace(/^1f+00/, ''); var digestInfoAry = _rsasign_getAlgNameAndHashFromHexDisgestInfo(hDigestInfo); if (digestInfoAry.length == 0) return false; var algName = digestInfoAry[0]; var diHashValue = digestInfoAry[1]; var ff = _RSASIGN_HASHHEXFUNC[algName]; var msgHashValue = ff(sMsg); return (diHashValue == msgHashValue); } RSAKey.prototype.signString = _rsasign_signString; RSAKey.prototype.signStringWithSHA1 = _rsasign_signStringWithSHA1; RSAKey.prototype.signStringWithSHA256 = _rsasign_signStringWithSHA256; RSAKey.prototype.verifyString = _rsasign_verifyString; RSAKey.prototype.verifyHexSignatureForMessage = _rsasign_verifyHexSignatureForMessage;