cryptico
Version:
## Overview
1,902 lines (1,656 loc) • 81.5 kB
JavaScript
// Copyright (c) 2005 Tom Wu
// All Rights Reserved.
// See "LICENSE" for details.
// Basic JavaScript BN library - subset useful for RSA encryption.
// Bits per digit
var dbits;
// (public) Constructor
function BigInteger(a, b, c) {
if (a != null) if ("number" == typeof a) this.fromNumber(a, b, c);
else if (b == null && "string" != typeof a) this.fromString(a, 256);
else this.fromString(a, b);
}
// return new, unset BigInteger
function nbi() {
return new BigInteger(null);
}
// am avoids a big mult-and-extract completely.
// Max digit bits should be <= 30 because we do bitwise ops
// on values up to 2*hdvalue^2-hdvalue-1 (< 2^31)
function am(i, x, w, j, c, n) {
var xl = x & 0x7fff,
xh = x >> 15;
while (--n >= 0) {
var l = this[i] & 0x7fff;
var h = this[i++] >> 15;
var m = xh * l + h * xl;
l = xl * l + ((m & 0x7fff) << 15) + w[j] + (c & 0x3fffffff);
c = (l >>> 30) + (m >>> 15) + xh * h + (c >>> 30);
w[j++] = l & 0x3fffffff;
}
return c;
}
BigInteger.prototype.am = am;
dbits = 30;
BigInteger.prototype.DB = dbits;
BigInteger.prototype.DM = ((1 << dbits) - 1);
BigInteger.prototype.DV = (1 << dbits);
var BI_FP = 52;
BigInteger.prototype.FV = Math.pow(2, BI_FP);
BigInteger.prototype.F1 = BI_FP - dbits;
BigInteger.prototype.F2 = 2 * dbits - BI_FP;
// Digit conversions
var BI_RM = "0123456789abcdefghijklmnopqrstuvwxyz";
var BI_RC = new Array();
var rr, vv;
rr = "0".charCodeAt(0);
for (vv = 0; vv <= 9; ++vv) BI_RC[rr++] = vv;
rr = "a".charCodeAt(0);
for (vv = 10; vv < 36; ++vv) BI_RC[rr++] = vv;
rr = "A".charCodeAt(0);
for (vv = 10; vv < 36; ++vv) BI_RC[rr++] = vv;
function int2char(n) {
return BI_RM.charAt(n);
}
function intAt(s, i) {
var c = BI_RC[s.charCodeAt(i)];
return (c == null) ? -1 : c;
}
// (protected) copy this to r
function bnpCopyTo(r) {
for (var i = this.t - 1; i >= 0; --i) r[i] = this[i];
r.t = this.t;
r.s = this.s;
}
// (protected) set from integer value x, -DV <= x < DV
function bnpFromInt(x) {
this.t = 1;
this.s = (x < 0) ? -1 : 0;
if (x > 0) this[0] = x;
else if (x < -1) this[0] = x + DV;
else this.t = 0;
}
// return bigint initialized to value
function nbv(i) {
var r = nbi();
r.fromInt(i);
return r;
}
// (protected) set from string and radix
function bnpFromString(s, b) {
var k;
if (b == 16) k = 4;
else if (b == 8) k = 3;
else if (b == 256) k = 8; // byte array
else if (b == 2) k = 1;
else if (b == 32) k = 5;
else if (b == 4) k = 2;
else {
this.fromRadix(s, b);
return;
}
this.t = 0;
this.s = 0;
var i = s.length,
mi = false,
sh = 0;
while (--i >= 0) {
var x = (k == 8) ? s[i] & 0xff : intAt(s, i);
if (x < 0) {
if (s.charAt(i) == "-") mi = true;
continue;
}
mi = false;
if (sh == 0) this[this.t++] = x;
else if (sh + k > this.DB) {
this[this.t - 1] |= (x & ((1 << (this.DB - sh)) - 1)) << sh;
this[this.t++] = (x >> (this.DB - sh));
}
else this[this.t - 1] |= x << sh;
sh += k;
if (sh >= this.DB) sh -= this.DB;
}
if (k == 8 && (s[0] & 0x80) != 0) {
this.s = -1;
if (sh > 0) this[this.t - 1] |= ((1 << (this.DB - sh)) - 1) << sh;
}
this.clamp();
if (mi) BigInteger.ZERO.subTo(this, this);
}
// (protected) clamp off excess high words
function bnpClamp() {
var c = this.s & this.DM;
while (this.t > 0 && this[this.t - 1] == c)--this.t;
}
// (public) return string representation in given radix
function bnToString(b) {
if (this.s < 0) return "-" + this.negate().toString(b);
var k;
if (b == 16) k = 4;
else if (b == 8) k = 3;
else if (b == 2) k = 1;
else if (b == 32) k = 5;
else if (b == 64) k = 6;
else if (b == 4) k = 2;
else return this.toRadix(b);
var km = (1 << k) - 1,
d, m = false,
r = "",
i = this.t;
var p = this.DB - (i * this.DB) % k;
if (i-- > 0) {
if (p < this.DB && (d = this[i] >> p) > 0) {
m = true;
r = int2char(d);
}
while (i >= 0) {
if (p < k) {
d = (this[i] & ((1 << p) - 1)) << (k - p);
d |= this[--i] >> (p += this.DB - k);
}
else {
d = (this[i] >> (p -= k)) & km;
if (p <= 0) {
p += this.DB;
--i;
}
}
if (d > 0) m = true;
if (m) r += int2char(d);
}
}
return m ? r : "0";
}
// (public) -this
function bnNegate() {
var r = nbi();
BigInteger.ZERO.subTo(this, r);
return r;
}
// (public) |this|
function bnAbs() {
return (this.s < 0) ? this.negate() : this;
}
// (public) return + if this > a, - if this < a, 0 if equal
function bnCompareTo(a) {
var r = this.s - a.s;
if (r != 0) return r;
var i = this.t;
r = i - a.t;
if (r != 0) return r;
while (--i >= 0) if ((r = this[i] - a[i]) != 0) return r;
return 0;
}
// returns bit length of the integer x
function nbits(x) {
var r = 1,
t;
if ((t = x >>> 16) != 0) {
x = t;
r += 16;
}
if ((t = x >> 8) != 0) {
x = t;
r += 8;
}
if ((t = x >> 4) != 0) {
x = t;
r += 4;
}
if ((t = x >> 2) != 0) {
x = t;
r += 2;
}
if ((t = x >> 1) != 0) {
x = t;
r += 1;
}
return r;
}
// (public) return the number of bits in "this"
function bnBitLength() {
if (this.t <= 0) return 0;
return this.DB * (this.t - 1) + nbits(this[this.t - 1] ^ (this.s & this.DM));
}
// (protected) r = this << n*DB
function bnpDLShiftTo(n, r) {
var i;
for (i = this.t - 1; i >= 0; --i) r[i + n] = this[i];
for (i = n - 1; i >= 0; --i) r[i] = 0;
r.t = this.t + n;
r.s = this.s;
}
// (protected) r = this >> n*DB
function bnpDRShiftTo(n, r) {
for (var i = n; i < this.t; ++i) r[i - n] = this[i];
r.t = Math.max(this.t - n, 0);
r.s = this.s;
}
// (protected) r = this << n
function bnpLShiftTo(n, r) {
var bs = n % this.DB;
var cbs = this.DB - bs;
var bm = (1 << cbs) - 1;
var ds = Math.floor(n / this.DB),
c = (this.s << bs) & this.DM,
i;
for (i = this.t - 1; i >= 0; --i) {
r[i + ds + 1] = (this[i] >> cbs) | c;
c = (this[i] & bm) << bs;
}
for (i = ds - 1; i >= 0; --i) r[i] = 0;
r[ds] = c;
r.t = this.t + ds + 1;
r.s = this.s;
r.clamp();
}
// (protected) r = this >> n
function bnpRShiftTo(n, r) {
r.s = this.s;
var ds = Math.floor(n / this.DB);
if (ds >= this.t) {
r.t = 0;
return;
}
var bs = n % this.DB;
var cbs = this.DB - bs;
var bm = (1 << bs) - 1;
r[0] = this[ds] >> bs;
for (var i = ds + 1; i < this.t; ++i) {
r[i - ds - 1] |= (this[i] & bm) << cbs;
r[i - ds] = this[i] >> bs;
}
if (bs > 0) r[this.t - ds - 1] |= (this.s & bm) << cbs;
r.t = this.t - ds;
r.clamp();
}
// (protected) r = this - a
function bnpSubTo(a, r) {
var i = 0,
c = 0,
m = Math.min(a.t, this.t);
while (i < m) {
c += this[i] - a[i];
r[i++] = c & this.DM;
c >>= this.DB;
}
if (a.t < this.t) {
c -= a.s;
while (i < this.t) {
c += this[i];
r[i++] = c & this.DM;
c >>= this.DB;
}
c += this.s;
}
else {
c += this.s;
while (i < a.t) {
c -= a[i];
r[i++] = c & this.DM;
c >>= this.DB;
}
c -= a.s;
}
r.s = (c < 0) ? -1 : 0;
if (c < -1) r[i++] = this.DV + c;
else if (c > 0) r[i++] = c;
r.t = i;
r.clamp();
}
// (protected) r = this * a, r != this,a (HAC 14.12)
// "this" should be the larger one if appropriate.
function bnpMultiplyTo(a, r) {
var x = this.abs(),
y = a.abs();
var i = x.t;
r.t = i + y.t;
while (--i >= 0) r[i] = 0;
for (i = 0; i < y.t; ++i) r[i + x.t] = x.am(0, y[i], r, i, 0, x.t);
r.s = 0;
r.clamp();
if (this.s != a.s) BigInteger.ZERO.subTo(r, r);
}
// (protected) r = this^2, r != this (HAC 14.16)
function bnpSquareTo(r) {
var x = this.abs();
var i = r.t = 2 * x.t;
while (--i >= 0) r[i] = 0;
for (i = 0; i < x.t - 1; ++i) {
var c = x.am(i, x[i], r, 2 * i, 0, 1);
if ((r[i + x.t] += x.am(i + 1, 2 * x[i], r, 2 * i + 1, c, x.t - i - 1)) >= x.DV) {
r[i + x.t] -= x.DV;
r[i + x.t + 1] = 1;
}
}
if (r.t > 0) r[r.t - 1] += x.am(i, x[i], r, 2 * i, 0, 1);
r.s = 0;
r.clamp();
}
// (protected) divide this by m, quotient and remainder to q, r (HAC 14.20)
// r != q, this != m. q or r may be null.
function bnpDivRemTo(m, q, r) {
var pm = m.abs();
if (pm.t <= 0) return;
var pt = this.abs();
if (pt.t < pm.t) {
if (q != null) q.fromInt(0);
if (r != null) this.copyTo(r);
return;
}
if (r == null) r = nbi();
var y = nbi(),
ts = this.s,
ms = m.s;
var nsh = this.DB - nbits(pm[pm.t - 1]); // normalize modulus
if (nsh > 0) {
pm.lShiftTo(nsh, y);
pt.lShiftTo(nsh, r);
}
else {
pm.copyTo(y);
pt.copyTo(r);
}
var ys = y.t;
var y0 = y[ys - 1];
if (y0 == 0) return;
var yt = y0 * (1 << this.F1) + ((ys > 1) ? y[ys - 2] >> this.F2 : 0);
var d1 = this.FV / yt,
d2 = (1 << this.F1) / yt,
e = 1 << this.F2;
var i = r.t,
j = i - ys,
t = (q == null) ? nbi() : q;
y.dlShiftTo(j, t);
if (r.compareTo(t) >= 0) {
r[r.t++] = 1;
r.subTo(t, r);
}
BigInteger.ONE.dlShiftTo(ys, t);
t.subTo(y, y); // "negative" y so we can replace sub with am later
while (y.t < ys) y[y.t++] = 0;
while (--j >= 0) {
// Estimate quotient digit
var qd = (r[--i] == y0) ? this.DM : Math.floor(r[i] * d1 + (r[i - 1] + e) * d2);
if ((r[i] += y.am(0, qd, r, j, 0, ys)) < qd) { // Try it out
y.dlShiftTo(j, t);
r.subTo(t, r);
while (r[i] < --qd) r.subTo(t, r);
}
}
if (q != null) {
r.drShiftTo(ys, q);
if (ts != ms) BigInteger.ZERO.subTo(q, q);
}
r.t = ys;
r.clamp();
if (nsh > 0) r.rShiftTo(nsh, r); // Denormalize remainder
if (ts < 0) BigInteger.ZERO.subTo(r, r);
}
// (public) this mod a
function bnMod(a) {
var r = nbi();
this.abs().divRemTo(a, null, r);
if (this.s < 0 && r.compareTo(BigInteger.ZERO) > 0) a.subTo(r, r);
return r;
}
// Modular reduction using "classic" algorithm
function Classic(m) {
this.m = m;
}
function cConvert(x) {
if (x.s < 0 || x.compareTo(this.m) >= 0) return x.mod(this.m);
else return x;
}
function cRevert(x) {
return x;
}
function cReduce(x) {
x.divRemTo(this.m, null, x);
}
function cMulTo(x, y, r) {
x.multiplyTo(y, r);
this.reduce(r);
}
function cSqrTo(x, r) {
x.squareTo(r);
this.reduce(r);
}
Classic.prototype.convert = cConvert;
Classic.prototype.revert = cRevert;
Classic.prototype.reduce = cReduce;
Classic.prototype.mulTo = cMulTo;
Classic.prototype.sqrTo = cSqrTo;
// (protected) return "-1/this % 2^DB"; useful for Mont. reduction
// justification:
// xy == 1 (mod m)
// xy = 1+km
// xy(2-xy) = (1+km)(1-km)
// x[y(2-xy)] = 1-k^2m^2
// x[y(2-xy)] == 1 (mod m^2)
// if y is 1/x mod m, then y(2-xy) is 1/x mod m^2
// should reduce x and y(2-xy) by m^2 at each step to keep size bounded.
// JS multiply "overflows" differently from C/C++, so care is needed here.
function bnpInvDigit() {
if (this.t < 1) return 0;
var x = this[0];
if ((x & 1) == 0) return 0;
var y = x & 3; // y == 1/x mod 2^2
y = (y * (2 - (x & 0xf) * y)) & 0xf; // y == 1/x mod 2^4
y = (y * (2 - (x & 0xff) * y)) & 0xff; // y == 1/x mod 2^8
y = (y * (2 - (((x & 0xffff) * y) & 0xffff))) & 0xffff; // y == 1/x mod 2^16
// last step - calculate inverse mod DV directly;
// assumes 16 < DB <= 32 and assumes ability to handle 48-bit ints
y = (y * (2 - x * y % this.DV)) % this.DV; // y == 1/x mod 2^dbits
// we really want the negative inverse, and -DV < y < DV
return (y > 0) ? this.DV - y : -y;
}
// Montgomery reduction
function Montgomery(m) {
this.m = m;
this.mp = m.invDigit();
this.mpl = this.mp & 0x7fff;
this.mph = this.mp >> 15;
this.um = (1 << (m.DB - 15)) - 1;
this.mt2 = 2 * m.t;
}
// xR mod m
function montConvert(x) {
var r = nbi();
x.abs().dlShiftTo(this.m.t, r);
r.divRemTo(this.m, null, r);
if (x.s < 0 && r.compareTo(BigInteger.ZERO) > 0) this.m.subTo(r, r);
return r;
}
// x/R mod m
function montRevert(x) {
var r = nbi();
x.copyTo(r);
this.reduce(r);
return r;
}
// x = x/R mod m (HAC 14.32)
function montReduce(x) {
while (x.t <= this.mt2) // pad x so am has enough room later
x[x.t++] = 0;
for (var i = 0; i < this.m.t; ++i) {
// faster way of calculating u0 = x[i]*mp mod DV
var j = x[i] & 0x7fff;
var u0 = (j * this.mpl + (((j * this.mph + (x[i] >> 15) * this.mpl) & this.um) << 15)) & x.DM;
// use am to combine the multiply-shift-add into one call
j = i + this.m.t;
x[j] += this.m.am(0, u0, x, i, 0, this.m.t);
// propagate carry
while (x[j] >= x.DV) {
x[j] -= x.DV;
x[++j]++;
}
}
x.clamp();
x.drShiftTo(this.m.t, x);
if (x.compareTo(this.m) >= 0) x.subTo(this.m, x);
}
// r = "x^2/R mod m"; x != r
function montSqrTo(x, r) {
x.squareTo(r);
this.reduce(r);
}
// r = "xy/R mod m"; x,y != r
function montMulTo(x, y, r) {
x.multiplyTo(y, r);
this.reduce(r);
}
Montgomery.prototype.convert = montConvert;
Montgomery.prototype.revert = montRevert;
Montgomery.prototype.reduce = montReduce;
Montgomery.prototype.mulTo = montMulTo;
Montgomery.prototype.sqrTo = montSqrTo;
// (protected) true iff this is even
function bnpIsEven() {
return ((this.t > 0) ? (this[0] & 1) : this.s) == 0;
}
// (protected) this^e, e < 2^32, doing sqr and mul with "r" (HAC 14.79)
function bnpExp(e, z) {
if (e > 0xffffffff || e < 1) return BigInteger.ONE;
var r = nbi(),
r2 = nbi(),
g = z.convert(this),
i = nbits(e) - 1;
g.copyTo(r);
while (--i >= 0) {
z.sqrTo(r, r2);
if ((e & (1 << i)) > 0) z.mulTo(r2, g, r);
else {
var t = r;
r = r2;
r2 = t;
}
}
return z.revert(r);
}
// (public) this^e % m, 0 <= e < 2^32
function bnModPowInt(e, m) {
var z;
if (e < 256 || m.isEven()) z = new Classic(m);
else z = new Montgomery(m);
return this.exp(e, z);
}
// protected
BigInteger.prototype.copyTo = bnpCopyTo;
BigInteger.prototype.fromInt = bnpFromInt;
BigInteger.prototype.fromString = bnpFromString;
BigInteger.prototype.clamp = bnpClamp;
BigInteger.prototype.dlShiftTo = bnpDLShiftTo;
BigInteger.prototype.drShiftTo = bnpDRShiftTo;
BigInteger.prototype.lShiftTo = bnpLShiftTo;
BigInteger.prototype.rShiftTo = bnpRShiftTo;
BigInteger.prototype.subTo = bnpSubTo;
BigInteger.prototype.multiplyTo = bnpMultiplyTo;
BigInteger.prototype.squareTo = bnpSquareTo;
BigInteger.prototype.divRemTo = bnpDivRemTo;
BigInteger.prototype.invDigit = bnpInvDigit;
BigInteger.prototype.isEven = bnpIsEven;
BigInteger.prototype.exp = bnpExp;
// public
BigInteger.prototype.toString = bnToString;
BigInteger.prototype.negate = bnNegate;
BigInteger.prototype.abs = bnAbs;
BigInteger.prototype.compareTo = bnCompareTo;
BigInteger.prototype.bitLength = bnBitLength;
BigInteger.prototype.mod = bnMod;
BigInteger.prototype.modPowInt = bnModPowInt;
// "constants"
BigInteger.ZERO = nbv(0);
BigInteger.ONE = nbv(1);
function bnClone() {
var r = nbi();
this.copyTo(r);
return r;
}
// (public) return value as integer
function bnIntValue() {
if (this.s < 0) {
if (this.t == 1) return this[0] - this.DV;
else if (this.t == 0) return -1;
}
else if (this.t == 1) return this[0];
else if (this.t == 0) return 0;
// assumes 16 < DB < 32
return ((this[1] & ((1 << (32 - this.DB)) - 1)) << this.DB) | this[0];
}
// (public) return value as byte
function bnByteValue() {
return (this.t == 0) ? this.s : (this[0] << 24) >> 24;
}
// (public) return value as short (assumes DB>=16)
function bnShortValue() {
return (this.t == 0) ? this.s : (this[0] << 16) >> 16;
}
// (protected) return x s.t. r^x < DV
function bnpChunkSize(r) {
return Math.floor(Math.LN2 * this.DB / Math.log(r));
}
// (public) 0 if this == 0, 1 if this > 0
function bnSigNum() {
if (this.s < 0) return -1;
else if (this.t <= 0 || (this.t == 1 && this[0] <= 0)) return 0;
else return 1;
}
// (protected) convert to radix string
function bnpToRadix(b) {
if (b == null) b = 10;
if (this.signum() == 0 || b < 2 || b > 36) return "0";
var cs = this.chunkSize(b);
var a = Math.pow(b, cs);
var d = nbv(a),
y = nbi(),
z = nbi(),
r = "";
this.divRemTo(d, y, z);
while (y.signum() > 0) {
r = (a + z.intValue()).toString(b).substr(1) + r;
y.divRemTo(d, y, z);
}
return z.intValue().toString(b) + r;
}
// (protected) convert from radix string
function bnpFromRadix(s, b) {
this.fromInt(0);
if (b == null) b = 10;
var cs = this.chunkSize(b);
var d = Math.pow(b, cs),
mi = false,
j = 0,
w = 0;
for (var i = 0; i < s.length; ++i) {
var x = intAt(s, i);
if (x < 0) {
if (s.charAt(i) == "-" && this.signum() == 0) mi = true;
continue;
}
w = b * w + x;
if (++j >= cs) {
this.dMultiply(d);
this.dAddOffset(w, 0);
j = 0;
w = 0;
}
}
if (j > 0) {
this.dMultiply(Math.pow(b, j));
this.dAddOffset(w, 0);
}
if (mi) BigInteger.ZERO.subTo(this, this);
}
// (protected) alternate constructor
function bnpFromNumber(a, b, c) {
if ("number" == typeof b) {
// new BigInteger(int,int,RNG)
if (a < 2) this.fromInt(1);
else {
this.fromNumber(a, c);
if (!this.testBit(a - 1)) // force MSB set
this.bitwiseTo(BigInteger.ONE.shiftLeft(a - 1), op_or, this);
if (this.isEven()) this.dAddOffset(1, 0); // force odd
while (!this.isProbablePrime(b)) {
this.dAddOffset(2, 0);
if (this.bitLength() > a) this.subTo(BigInteger.ONE.shiftLeft(a - 1), this);
}
}
}
else {
// new BigInteger(int,RNG)
var x = new Array(),
t = a & 7;
x.length = (a >> 3) + 1;
b.nextBytes(x);
if (t > 0) x[0] &= ((1 << t) - 1);
else x[0] = 0;
this.fromString(x, 256);
}
}
// (public) convert to bigendian byte array
function bnToByteArray() {
var i = this.t,
r = new Array();
r[0] = this.s;
var p = this.DB - (i * this.DB) % 8,
d, k = 0;
if (i-- > 0) {
if (p < this.DB && (d = this[i] >> p) != (this.s & this.DM) >> p) r[k++] = d | (this.s << (this.DB - p));
while (i >= 0) {
if (p < 8) {
d = (this[i] & ((1 << p) - 1)) << (8 - p);
d |= this[--i] >> (p += this.DB - 8);
}
else {
d = (this[i] >> (p -= 8)) & 0xff;
if (p <= 0) {
p += this.DB;
--i;
}
}
if ((d & 0x80) != 0) d |= -256;
if (k == 0 && (this.s & 0x80) != (d & 0x80))++k;
if (k > 0 || d != this.s) r[k++] = d;
}
}
return r;
}
function bnEquals(a) {
return (this.compareTo(a) == 0);
}
function bnMin(a) {
return (this.compareTo(a) < 0) ? this : a;
}
function bnMax(a) {
return (this.compareTo(a) > 0) ? this : a;
}
// (protected) r = this op a (bitwise)
function bnpBitwiseTo(a, op, r) {
var i, f, m = Math.min(a.t, this.t);
for (i = 0; i < m; ++i) r[i] = op(this[i], a[i]);
if (a.t < this.t) {
f = a.s & this.DM;
for (i = m; i < this.t; ++i) r[i] = op(this[i], f);
r.t = this.t;
}
else {
f = this.s & this.DM;
for (i = m; i < a.t; ++i) r[i] = op(f, a[i]);
r.t = a.t;
}
r.s = op(this.s, a.s);
r.clamp();
}
// (public) this & a
function op_and(x, y) {
return x & y;
}
function bnAnd(a) {
var r = nbi();
this.bitwiseTo(a, op_and, r);
return r;
}
// (public) this | a
function op_or(x, y) {
return x | y;
}
function bnOr(a) {
var r = nbi();
this.bitwiseTo(a, op_or, r);
return r;
}
// (public) this ^ a
function op_xor(x, y) {
return x ^ y;
}
function bnXor(a) {
var r = nbi();
this.bitwiseTo(a, op_xor, r);
return r;
}
// (public) this & ~a
function op_andnot(x, y) {
return x & ~y;
}
function bnAndNot(a) {
var r = nbi();
this.bitwiseTo(a, op_andnot, r);
return r;
}
// (public) ~this
function bnNot() {
var r = nbi();
for (var i = 0; i < this.t; ++i) r[i] = this.DM & ~this[i];
r.t = this.t;
r.s = ~this.s;
return r;
}
// (public) this << n
function bnShiftLeft(n) {
var r = nbi();
if (n < 0) this.rShiftTo(-n, r);
else this.lShiftTo(n, r);
return r;
}
// (public) this >> n
function bnShiftRight(n) {
var r = nbi();
if (n < 0) this.lShiftTo(-n, r);
else this.rShiftTo(n, r);
return r;
}
// return index of lowest 1-bit in x, x < 2^31
function lbit(x) {
if (x == 0) return -1;
var r = 0;
if ((x & 0xffff) == 0) {
x >>= 16;
r += 16;
}
if ((x & 0xff) == 0) {
x >>= 8;
r += 8;
}
if ((x & 0xf) == 0) {
x >>= 4;
r += 4;
}
if ((x & 3) == 0) {
x >>= 2;
r += 2;
}
if ((x & 1) == 0)++r;
return r;
}
// (public) returns index of lowest 1-bit (or -1 if none)
function bnGetLowestSetBit() {
for (var i = 0; i < this.t; ++i)
if (this[i] != 0) return i * this.DB + lbit(this[i]);
if (this.s < 0) return this.t * this.DB;
return -1;
}
// return number of 1 bits in x
function cbit(x) {
var r = 0;
while (x != 0) {
x &= x - 1;
++r;
}
return r;
}
// (public) return number of set bits
function bnBitCount() {
var r = 0,
x = this.s & this.DM;
for (var i = 0; i < this.t; ++i) r += cbit(this[i] ^ x);
return r;
}
// (public) true iff nth bit is set
function bnTestBit(n) {
var j = Math.floor(n / this.DB);
if (j >= this.t) return (this.s != 0);
return ((this[j] & (1 << (n % this.DB))) != 0);
}
// (protected) this op (1<<n)
function bnpChangeBit(n, op) {
var r = BigInteger.ONE.shiftLeft(n);
this.bitwiseTo(r, op, r);
return r;
}
// (public) this | (1<<n)
function bnSetBit(n) {
return this.changeBit(n, op_or);
}
// (public) this & ~(1<<n)
function bnClearBit(n) {
return this.changeBit(n, op_andnot);
}
// (public) this ^ (1<<n)
function bnFlipBit(n) {
return this.changeBit(n, op_xor);
}
// (protected) r = this + a
function bnpAddTo(a, r) {
var i = 0,
c = 0,
m = Math.min(a.t, this.t);
while (i < m) {
c += this[i] + a[i];
r[i++] = c & this.DM;
c >>= this.DB;
}
if (a.t < this.t) {
c += a.s;
while (i < this.t) {
c += this[i];
r[i++] = c & this.DM;
c >>= this.DB;
}
c += this.s;
}
else {
c += this.s;
while (i < a.t) {
c += a[i];
r[i++] = c & this.DM;
c >>= this.DB;
}
c += a.s;
}
r.s = (c < 0) ? -1 : 0;
if (c > 0) r[i++] = c;
else if (c < -1) r[i++] = this.DV + c;
r.t = i;
r.clamp();
}
// (public) this + a
function bnAdd(a) {
var r = nbi();
this.addTo(a, r);
return r;
}
// (public) this - a
function bnSubtract(a) {
var r = nbi();
this.subTo(a, r);
return r;
}
// (public) this * a
function bnMultiply(a) {
var r = nbi();
this.multiplyTo(a, r);
return r;
}
// (public) this^2
function bnSquare() {
var r = nbi();
this.squareTo(r);
return r;
}
// (public) this / a
function bnDivide(a) {
var r = nbi();
this.divRemTo(a, r, null);
return r;
}
// (public) this % a
function bnRemainder(a) {
var r = nbi();
this.divRemTo(a, null, r);
return r;
}
// (public) [this/a,this%a]
function bnDivideAndRemainder(a) {
var q = nbi(),
r = nbi();
this.divRemTo(a, q, r);
return new Array(q, r);
}
// (protected) this *= n, this >= 0, 1 < n < DV
function bnpDMultiply(n) {
this[this.t] = this.am(0, n - 1, this, 0, 0, this.t);
++this.t;
this.clamp();
}
// (protected) this += n << w words, this >= 0
function bnpDAddOffset(n, w) {
if (n == 0) return;
while (this.t <= w) this[this.t++] = 0;
this[w] += n;
while (this[w] >= this.DV) {
this[w] -= this.DV;
if (++w >= this.t) this[this.t++] = 0;
++this[w];
}
}
// A "null" reducer
function NullExp() {}
function nNop(x) {
return x;
}
function nMulTo(x, y, r) {
x.multiplyTo(y, r);
}
function nSqrTo(x, r) {
x.squareTo(r);
}
NullExp.prototype.convert = nNop;
NullExp.prototype.revert = nNop;
NullExp.prototype.mulTo = nMulTo;
NullExp.prototype.sqrTo = nSqrTo;
// (public) this^e
function bnPow(e) {
return this.exp(e, new NullExp());
}
// (protected) r = lower n words of "this * a", a.t <= n
// "this" should be the larger one if appropriate.
function bnpMultiplyLowerTo(a, n, r) {
var i = Math.min(this.t + a.t, n);
r.s = 0; // assumes a,this >= 0
r.t = i;
while (i > 0) r[--i] = 0;
var j;
for (j = r.t - this.t; i < j; ++i) r[i + this.t] = this.am(0, a[i], r, i, 0, this.t);
for (j = Math.min(a.t, n); i < j; ++i) this.am(0, a[i], r, i, 0, n - i);
r.clamp();
}
// (protected) r = "this * a" without lower n words, n > 0
// "this" should be the larger one if appropriate.
function bnpMultiplyUpperTo(a, n, r) {
--n;
var i = r.t = this.t + a.t - n;
r.s = 0; // assumes a,this >= 0
while (--i >= 0) r[i] = 0;
for (i = Math.max(n - this.t, 0); i < a.t; ++i)
r[this.t + i - n] = this.am(n - i, a[i], r, 0, 0, this.t + i - n);
r.clamp();
r.drShiftTo(1, r);
}
// Barrett modular reduction
function Barrett(m) {
// setup Barrett
this.r2 = nbi();
this.q3 = nbi();
BigInteger.ONE.dlShiftTo(2 * m.t, this.r2);
this.mu = this.r2.divide(m);
this.m = m;
}
function barrettConvert(x) {
if (x.s < 0 || x.t > 2 * this.m.t) return x.mod(this.m);
else if (x.compareTo(this.m) < 0) return x;
else {
var r = nbi();
x.copyTo(r);
this.reduce(r);
return r;
}
}
function barrettRevert(x) {
return x;
}
// x = x mod m (HAC 14.42)
function barrettReduce(x) {
x.drShiftTo(this.m.t - 1, this.r2);
if (x.t > this.m.t + 1) {
x.t = this.m.t + 1;
x.clamp();
}
this.mu.multiplyUpperTo(this.r2, this.m.t + 1, this.q3);
this.m.multiplyLowerTo(this.q3, this.m.t + 1, this.r2);
while (x.compareTo(this.r2) < 0) x.dAddOffset(1, this.m.t + 1);
x.subTo(this.r2, x);
while (x.compareTo(this.m) >= 0) x.subTo(this.m, x);
}
// r = x^2 mod m; x != r
function barrettSqrTo(x, r) {
x.squareTo(r);
this.reduce(r);
}
// r = x*y mod m; x,y != r
function barrettMulTo(x, y, r) {
x.multiplyTo(y, r);
this.reduce(r);
}
Barrett.prototype.convert = barrettConvert;
Barrett.prototype.revert = barrettRevert;
Barrett.prototype.reduce = barrettReduce;
Barrett.prototype.mulTo = barrettMulTo;
Barrett.prototype.sqrTo = barrettSqrTo;
// (public) this^e % m (HAC 14.85)
function bnModPow(e, m) {
var i = e.bitLength(),
k, r = nbv(1),
z;
if (i <= 0) return r;
else if (i < 18) k = 1;
else if (i < 48) k = 3;
else if (i < 144) k = 4;
else if (i < 768) k = 5;
else k = 6;
if (i < 8) z = new Classic(m);
else if (m.isEven()) z = new Barrett(m);
else z = new Montgomery(m);
// precomputation
var g = new Array(),
n = 3,
k1 = k - 1,
km = (1 << k) - 1;
g[1] = z.convert(this);
if (k > 1) {
var g2 = nbi();
z.sqrTo(g[1], g2);
while (n <= km) {
g[n] = nbi();
z.mulTo(g2, g[n - 2], g[n]);
n += 2;
}
}
var j = e.t - 1,
w, is1 = true,
r2 = nbi(),
t;
i = nbits(e[j]) - 1;
while (j >= 0) {
if (i >= k1) w = (e[j] >> (i - k1)) & km;
else {
w = (e[j] & ((1 << (i + 1)) - 1)) << (k1 - i);
if (j > 0) w |= e[j - 1] >> (this.DB + i - k1);
}
n = k;
while ((w & 1) == 0) {
w >>= 1;
--n;
}
if ((i -= n) < 0) {
i += this.DB;
--j;
}
if (is1) { // ret == 1, don't bother squaring or multiplying it
g[w].copyTo(r);
is1 = false;
}
else {
while (n > 1) {
z.sqrTo(r, r2);
z.sqrTo(r2, r);
n -= 2;
}
if (n > 0) z.sqrTo(r, r2);
else {
t = r;
r = r2;
r2 = t;
}
z.mulTo(r2, g[w], r);
}
while (j >= 0 && (e[j] & (1 << i)) == 0) {
z.sqrTo(r, r2);
t = r;
r = r2;
r2 = t;
if (--i < 0) {
i = this.DB - 1;
--j;
}
}
}
return z.revert(r);
}
// (public) gcd(this,a) (HAC 14.54)
function bnGCD(a) {
var x = (this.s < 0) ? this.negate() : this.clone();
var y = (a.s < 0) ? a.negate() : a.clone();
if (x.compareTo(y) < 0) {
var t = x;
x = y;
y = t;
}
var i = x.getLowestSetBit(),
g = y.getLowestSetBit();
if (g < 0) return x;
if (i < g) g = i;
if (g > 0) {
x.rShiftTo(g, x);
y.rShiftTo(g, y);
}
while (x.signum() > 0) {
if ((i = x.getLowestSetBit()) > 0) x.rShiftTo(i, x);
if ((i = y.getLowestSetBit()) > 0) y.rShiftTo(i, y);
if (x.compareTo(y) >= 0) {
x.subTo(y, x);
x.rShiftTo(1, x);
}
else {
y.subTo(x, y);
y.rShiftTo(1, y);
}
}
if (g > 0) y.lShiftTo(g, y);
return y;
}
// (protected) this % n, n < 2^26
function bnpModInt(n) {
if (n <= 0) return 0;
var d = this.DV % n,
r = (this.s < 0) ? n - 1 : 0;
if (this.t > 0) if (d == 0) r = this[0] % n;
else for (var i = this.t - 1; i >= 0; --i) r = (d * r + this[i]) % n;
return r;
}
// (public) 1/this % m (HAC 14.61)
function bnModInverse(m) {
var ac = m.isEven();
if ((this.isEven() && ac) || m.signum() == 0) return BigInteger.ZERO;
var u = m.clone(),
v = this.clone();
var a = nbv(1),
b = nbv(0),
c = nbv(0),
d = nbv(1);
while (u.signum() != 0) {
while (u.isEven()) {
u.rShiftTo(1, u);
if (ac) {
if (!a.isEven() || !b.isEven()) {
a.addTo(this, a);
b.subTo(m, b);
}
a.rShiftTo(1, a);
}
else if (!b.isEven()) b.subTo(m, b);
b.rShiftTo(1, b);
}
while (v.isEven()) {
v.rShiftTo(1, v);
if (ac) {
if (!c.isEven() || !d.isEven()) {
c.addTo(this, c);
d.subTo(m, d);
}
c.rShiftTo(1, c);
}
else if (!d.isEven()) d.subTo(m, d);
d.rShiftTo(1, d);
}
if (u.compareTo(v) >= 0) {
u.subTo(v, u);
if (ac) a.subTo(c, a);
b.subTo(d, b);
}
else {
v.subTo(u, v);
if (ac) c.subTo(a, c);
d.subTo(b, d);
}
}
if (v.compareTo(BigInteger.ONE) != 0) return BigInteger.ZERO;
if (d.compareTo(m) >= 0) return d.subtract(m);
if (d.signum() < 0) d.addTo(m, d);
else return d;
if (d.signum() < 0) return d.add(m);
else return d;
}
var lowprimes = [2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37, 41, 43, 47, 53, 59, 61, 67, 71, 73, 79, 83, 89, 97, 101, 103, 107, 109, 113, 127, 131, 137, 139, 149, 151, 157, 163, 167, 173, 179, 181, 191, 193, 197, 199, 211, 223, 227, 229, 233, 239, 241, 251, 257, 263, 269, 271, 277, 281, 283, 293, 307, 311, 313, 317, 331, 337, 347, 349, 353, 359, 367, 373, 379, 383, 389, 397, 401, 409, 419, 421, 431, 433, 439, 443, 449, 457, 461, 463, 467, 479, 487, 491, 499, 503, 509, 521, 523, 541, 547, 557, 563, 569, 571, 577, 587, 593, 599, 601, 607, 613, 617, 619, 631, 641, 643, 647, 653, 659, 661, 673, 677, 683, 691, 701, 709, 719, 727, 733, 739, 743, 751, 757, 761, 769, 773, 787, 797, 809, 811, 821, 823, 827, 829, 839, 853, 857, 859, 863, 877, 881, 883, 887, 907, 911, 919, 929, 937, 941, 947, 953, 967, 971, 977, 983, 991, 997];
var lplim = (1 << 26) / lowprimes[lowprimes.length - 1];
// (public) test primality with certainty >= 1-.5^t
function bnIsProbablePrime(t) {
var i, x = this.abs();
if (x.t == 1 && x[0] <= lowprimes[lowprimes.length - 1]) {
for (i = 0; i < lowprimes.length; ++i)
if (x[0] == lowprimes[i]) return true;
return false;
}
if (x.isEven()) return false;
i = 1;
while (i < lowprimes.length) {
var m = lowprimes[i],
j = i + 1;
while (j < lowprimes.length && m < lplim) m *= lowprimes[j++];
m = x.modInt(m);
while (i < j) if (m % lowprimes[i++] == 0) return false;
}
return x.millerRabin(t);
}
// (protected) true if probably prime (HAC 4.24, Miller-Rabin)
function bnpMillerRabin(t) {
var n1 = this.subtract(BigInteger.ONE);
var k = n1.getLowestSetBit();
if (k <= 0) return false;
var r = n1.shiftRight(k);
t = (t + 1) >> 1;
if (t > lowprimes.length) t = lowprimes.length;
var a = nbi();
for (var i = 0; i < t; ++i) {
//Pick bases at random, instead of starting at 2
a.fromInt(lowprimes[Math.floor(Math.random() * lowprimes.length)]);
var y = a.modPow(r, this);
if (y.compareTo(BigInteger.ONE) != 0 && y.compareTo(n1) != 0) {
var j = 1;
while (j++ < k && y.compareTo(n1) != 0) {
y = y.modPowInt(2, this);
if (y.compareTo(BigInteger.ONE) == 0) return false;
}
if (y.compareTo(n1) != 0) return false;
}
}
return true;
}
// protected
BigInteger.prototype.chunkSize = bnpChunkSize;
BigInteger.prototype.toRadix = bnpToRadix;
BigInteger.prototype.fromRadix = bnpFromRadix;
BigInteger.prototype.fromNumber = bnpFromNumber;
BigInteger.prototype.bitwiseTo = bnpBitwiseTo;
BigInteger.prototype.changeBit = bnpChangeBit;
BigInteger.prototype.addTo = bnpAddTo;
BigInteger.prototype.dMultiply = bnpDMultiply;
BigInteger.prototype.dAddOffset = bnpDAddOffset;
BigInteger.prototype.multiplyLowerTo = bnpMultiplyLowerTo;
BigInteger.prototype.multiplyUpperTo = bnpMultiplyUpperTo;
BigInteger.prototype.modInt = bnpModInt;
BigInteger.prototype.millerRabin = bnpMillerRabin;
// public
BigInteger.prototype.clone = bnClone;
BigInteger.prototype.intValue = bnIntValue;
BigInteger.prototype.byteValue = bnByteValue;
BigInteger.prototype.shortValue = bnShortValue;
BigInteger.prototype.signum = bnSigNum;
BigInteger.prototype.toByteArray = bnToByteArray;
BigInteger.prototype.equals = bnEquals;
BigInteger.prototype.min = bnMin;
BigInteger.prototype.max = bnMax;
BigInteger.prototype.and = bnAnd;
BigInteger.prototype.or = bnOr;
BigInteger.prototype.xor = bnXor;
BigInteger.prototype.andNot = bnAndNot;
BigInteger.prototype.not = bnNot;
BigInteger.prototype.shiftLeft = bnShiftLeft;
BigInteger.prototype.shiftRight = bnShiftRight;
BigInteger.prototype.getLowestSetBit = bnGetLowestSetBit;
BigInteger.prototype.bitCount = bnBitCount;
BigInteger.prototype.testBit = bnTestBit;
BigInteger.prototype.setBit = bnSetBit;
BigInteger.prototype.clearBit = bnClearBit;
BigInteger.prototype.flipBit = bnFlipBit;
BigInteger.prototype.add = bnAdd;
BigInteger.prototype.subtract = bnSubtract;
BigInteger.prototype.multiply = bnMultiply;
BigInteger.prototype.divide = bnDivide;
BigInteger.prototype.remainder = bnRemainder;
BigInteger.prototype.divideAndRemainder = bnDivideAndRemainder;
BigInteger.prototype.modPow = bnModPow;
BigInteger.prototype.modInverse = bnModInverse;
BigInteger.prototype.pow = bnPow;
BigInteger.prototype.gcd = bnGCD;
BigInteger.prototype.isProbablePrime = bnIsProbablePrime;
// JSBN-specific extension
BigInteger.prototype.square = bnSquare;// seedrandom.js version 2.0.
// Author: David Bau 4/2/2011
//
// Defines a method Math.seedrandom() that, when called, substitutes
// an explicitly seeded RC4-based algorithm for Math.random(). Also
// supports automatic seeding from local or network sources of entropy.
//
// Usage:
//
// <script src=http://davidbau.com/encode/seedrandom-min.js></script>
//
// Math.seedrandom('yipee'); Sets Math.random to a function that is
// initialized using the given explicit seed.
//
// Math.seedrandom(); Sets Math.random to a function that is
// seeded using the current time, dom state,
// and other accumulated local entropy.
// The generated seed string is returned.
//
// Math.seedrandom('yowza', true);
// Seeds using the given explicit seed mixed
// together with accumulated entropy.
//
// <script src="http://bit.ly/srandom-512"></script>
// Seeds using physical random bits downloaded
// from random.org.
//
// <script src="https://jsonlib.appspot.com/urandom?callback=Math.seedrandom">
// </script> Seeds using urandom bits from call.jsonlib.com,
// which is faster than random.org.
//
// Examples:
//
// Math.seedrandom("hello"); // Use "hello" as the seed.
// document.write(Math.random()); // Always 0.5463663768140734
// document.write(Math.random()); // Always 0.43973793770592234
// var rng1 = Math.random; // Remember the current prng.
//
// var autoseed = Math.seedrandom(); // New prng with an automatic seed.
// document.write(Math.random()); // Pretty much unpredictable.
//
// Math.random = rng1; // Continue "hello" prng sequence.
// document.write(Math.random()); // Always 0.554769432473455
//
// Math.seedrandom(autoseed); // Restart at the previous seed.
// document.write(Math.random()); // Repeat the 'unpredictable' value.
//
// Notes:
//
// Each time seedrandom('arg') is called, entropy from the passed seed
// is accumulated in a pool to help generate future seeds for the
// zero-argument form of Math.seedrandom, so entropy can be injected over
// time by calling seedrandom with explicit data repeatedly.
//
// On speed - This javascript implementation of Math.random() is about
// 3-10x slower than the built-in Math.random() because it is not native
// code, but this is typically fast enough anyway. Seeding is more expensive,
// especially if you use auto-seeding. Some details (timings on Chrome 4):
//
// Our Math.random() - avg less than 0.002 milliseconds per call
// seedrandom('explicit') - avg less than 0.5 milliseconds per call
// seedrandom('explicit', true) - avg less than 2 milliseconds per call
// seedrandom() - avg about 38 milliseconds per call
//
// LICENSE (BSD):
//
// Copyright 2010 David Bau, all rights reserved.
//
// Redistribution and use in source and binary forms, with or without
// modification, are permitted provided that the following conditions are met:
//
// 1. Redistributions of source code must retain the above copyright
// notice, this list of conditions and the following disclaimer.
//
// 2. Redistributions in binary form must reproduce the above copyright
// notice, this list of conditions and the following disclaimer in the
// documentation and/or other materials provided with the distribution.
//
// 3. Neither the name of this module nor the names of its contributors may
// be used to endorse or promote products derived from this software
// without specific prior written permission.
//
// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
// "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
// LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
// A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
// OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
// SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
// LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
// DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
// THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
// (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
// OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
//
/**
* All code is in an anonymous closure to keep the global namespace clean.
*
* @param {number=} overflow
* @param {number=} startdenom
*/
(function (pool, math, width, chunks, significance, overflow, startdenom)
{
//
// seedrandom()
// This is the seedrandom function described above.
//
math['seedrandom'] = function seedrandom(seed, use_entropy)
{
var key = [];
var arc4;
// Flatten the seed string or build one from local entropy if needed.
seed = mixkey(flatten(
use_entropy ? [seed, pool] : arguments.length ? seed : [new Date().getTime(), pool], 3), key);
// Use the seed to initialize an ARC4 generator.
arc4 = new ARC4(key);
// Mix the randomness into accumulated entropy.
mixkey(arc4.S, pool);
// Override Math.random
// This function returns a random double in [0, 1) that contains
// randomness in every bit of the mantissa of the IEEE 754 value.
math['random'] = function random()
{ // Closure to return a random double:
var n = arc4.g(chunks); // Start with a numerator n < 2 ^ 48
var d = startdenom; // and denominator d = 2 ^ 48.
var x = 0; // and no 'extra last byte'.
while (n < significance)
{ // Fill up all significant digits by
n = (n + x) * width; // shifting numerator and
d *= width; // denominator and generating a
x = arc4.g(1); // new least-significant-byte.
}
while (n >= overflow)
{ // To avoid rounding up, before adding
n /= 2; // last byte, shift everything
d /= 2; // right using integer math until
x >>>= 1; // we have exactly the desired bits.
}
return (n + x) / d; // Form the number within [0, 1).
};
// Return the seed that was used
return seed;
};
//
// ARC4
//
// An ARC4 implementation. The constructor takes a key in the form of
// an array of at most (width) integers that should be 0 <= x < (width).
//
// The g(count) method returns a pseudorandom integer that concatenates
// the next (count) outputs from ARC4. Its return value is a number x
// that is in the range 0 <= x < (width ^ count).
//
/** @constructor */
function ARC4(key)
{
var t, u, me = this,
keylen = key.length;
var i = 0,
j = me.i = me.j = me.m = 0;
me.S = [];
me.c = [];
// The empty key [] is treated as [0].
if (!keylen)
{
key = [keylen++];
}
// Set up S using the standard key scheduling algorithm.
while (i < width)
{
me.S[i] = i++;
}
for (i = 0; i < width; i++)
{
t = me.S[i];
j = lowbits(j + t + key[i % keylen]);
u = me.S[j];
me.S[i] = u;
me.S[j] = t;
}
// The "g" method returns the next (count) outputs as one number.
me.g = function getnext(count)
{
var s = me.S;
var i = lowbits(me.i + 1);
var t = s[i];
var j = lowbits(me.j + t);
var u = s[j];
s[i] = u;
s[j] = t;
var r = s[lowbits(t + u)];
while (--count)
{
i = lowbits(i + 1);
t = s[i];
j = lowbits(j + t);
u = s[j];
s[i] = u;
s[j] = t;
r = r * width + s[lowbits(t + u)];
}
me.i = i;
me.j = j;
return r;
};
// For robust unpredictability discard an initial batch of values.
// See http://www.rsa.com/rsalabs/node.asp?id=2009
me.g(width);
}
//
// flatten()
// Converts an object tree to nested arrays of strings.
//
/** @param {Object=} result
* @param {string=} prop
* @param {string=} typ */
function flatten(obj, depth, result, prop, typ)
{
result = [];
typ = typeof (obj);
if (depth && typ == 'object')
{
for (prop in obj)
{
if (prop.indexOf('S') < 5)
{ // Avoid FF3 bug (local/sessionStorage)
try
{
result.push(flatten(obj[prop], depth - 1));
}
catch (e)
{}
}
}
}
return (result.length ? result : obj + (typ != 'string' ? '\0' : ''));
}
//
// mixkey()
// Mixes a string seed into a key that is an array of integers, and
// returns a shortened string seed that is equivalent to the result key.
//
/** @param {number=} smear
* @param {number=} j */
function mixkey(seed, key, smear, j)
{
seed += ''; // Ensure the seed is a string
smear = 0;
for (j = 0; j < seed.length; j++)
{
key[lowbits(j)] = lowbits((smear ^= key[lowbits(j)] * 19) + seed.charCodeAt(j));
}
seed = '';
for (j in key)
{
seed += String.fromCharCode(key[j]);
}
return seed;
}
//
// lowbits()
// A quick "n mod width" for width a power of 2.
//
function lowbits(n)
{
return n & (width - 1);
}
//
// The following constants are related to IEEE 754 limits.
//
startdenom = math.pow(width, chunks);
significance = math.pow(2, significance);
overflow = significance * 2;
//
// When seedrandom.js is loaded, we immediately mix a few bits
// from the built-in RNG into the entropy pool. Because we do
// not want to intefere with determinstic PRNG state later,
// seedrandom will not call math.random on its own again after
// initialization.
//
mixkey(math.random(), pool);
// End anonymous scope, and pass initial values.
})([], // pool: entropy pool starts empty
Math, // math: package containing random, pow, and seedrandom
256, // width: each RC4 output is 0 <= x < 256
6, // chunks: at least six RC4 outputs for each double
52 // significance: there are 52 significant digits in a double
);
// This is not really a random number generator object, and two SeededRandom
// objects will conflict with one another, but it's good enough for generating
// the rsa key.
function SeededRandom(){}
function SRnextBytes(ba)
{
var i;
for(i = 0; i < ba.length; i++)
{
ba[i] = Math.floor(Math.random() * 256);
}
}
SeededRandom.prototype.nextBytes = SRnextBytes;
// prng4.js - uses Arcfour as a PRNG
function Arcfour() {
this.i = 0;
this.j = 0;
this.S = new Array();
}
// Initialize arcfour context from key, an array of ints, each from [0..255]
function ARC4init(key) {
var i, j, t;
for(i = 0; i < 256; ++i)
this.S[i] = i;
j = 0;
for(i = 0; i < 256; ++i) {
j = (j + this.S[i] + key[i % key.length]) & 255;
t = this.S[i];
this.S[i] = this.S[j];
this.S[j] = t;
}
this.i = 0;
this.j = 0;
}
function ARC4next() {
var t;
this.i = (this.i + 1) & 255;
this.j = (this.j + this.S[this.i]) & 255;
t = this.S[this.i];
this.S[this.i] = this.S[this.j];
this.S[this.j] = t;
return this.S[(t + this.S[this.i]) & 255];
}
Arcfour.prototype.init = ARC4init;
Arcfour.prototype.next = ARC4next;
// Plug in your RNG constructor here
function prng_newstate() {
return new Arcfour();
}
// Pool size must be a multiple of 4 and greater than 32.
// An array of bytes the size of the pool will be passed to init()
var rng_psize = 256;
// Random number generator - requires a PRNG backend, e.g. prng4.js
// For best results, put code like
// <body onClick='rng_seed_time();' onKeyPress='rng_seed_time();'>
// in your main HTML document.
var rng_state;
var rng_pool;
var rng_pptr;
// Mix in a 32-bit integer into the pool
function rng_seed_i